
1

Bytecode translation via compilation
• Bytecode à HIR (abstract interp) + basic optimizations
• LIR à LIR (expand calls) + CSE + data dependencies
• LIR à MIR (instr. scheduling) + Register Allocation
• Prologue/epilogue added to method

n Prologue
n Epilogue

2

Bytecode translation via compilation
• Bytecode à HIR (abstract interp) + basic optimizations
• LIR à LIR (expand calls) + CSE + data dependencies
• LIR à MIR (instr. scheduling) + Register Allocation
• Prologue/epilogue added to method

n Prologue
4Allocate runtime stack frame
4Save any nonvolatile registers
4Check whether a thread yield has been requested
4Lock if the method is synchronized

n Epilogue
4Restore any nonvolatile registers
4Store return value
4Unlock if the method is synchronized
4Deallocate the runtime stack frame
4Branch to return address

3

Bytecode translation via compilation
• Bytecode à HIR (abstract interp) + basic optimizations
• LIR à LIR (expand calls) + CSE + data dependencies
• LIR à MIR (instr. scheduling) + Register Allocation
• Prologue/epilogue added to method

n Prologue
n Epilogue

• Store in memory at address
n Convert intermediate-instruction offsets to machine code offsets

4For exception handling
4For garbage collection (reference maps)

n Update VM tables (statics or VMTs) with address
n Jump and execute (JIT-compiled methods), fixing up the stack to

return to the caller of the JIT'd method

The JikesRVM Adaptive
Optimization System

Adaptive Compilation (aka Adaptive Optimization)

• Compiling at the method level is
n Slow – much slower than cost of interpreting one instruction
n Optimizing compiler (as efficient as it is) is very high ohead

• If we compile everything
n Big startup delay
n Big delay the first time we execute a method

• Goal: combine interpretation and compilation to get the
best of both “mixed mode”
n Interpret first: fast startup, no long pauses
n Identify the frequently executing methods (hot methods)
n Compile them (with some optimization) in the background

4Execute them the next time around

Multi-compiler (Mixed Mode) System
• Compile-only vs Compile+Interpret strategy

• Baseline – (could be replaced with interpretation) …
n Simulates execution using the bytecode and operand stack
n Translates bytecodes to native code directly
n No optimization, no register allocation
n Performance much like an interpreter
n Fast compilation/interpretation, SLOW code

• Optimizing
n Translates bytecodes to HIR->LIR->MIR
n Optimization is performed on each level
n Linear scan register allocation
n Slow compilation/fast code

JikesRVM Compiler Differences

• Compile Time/Speed comparison
• 500MHz RS6000, 4GB Mem, 1-processor

• Compile time: Bytecode bytes per millisecond
n Baseline: 378, L0: 9.3, L1: 5.7, L2: 1.8

• Code speed normalized to baseline
n L0: 4.3, L1: 6.1, L2: 6.6

• EX: L2 is 209 times slower to compile & produces code
that is 6.6 times faster

JikesRVM Threading

• Two alternatives
n Native threads: Map each Java thread to an OS pthread; OS-

managed
4Less work for the runtime (simpler) for scheduling
4More work for the runtime to facilitate GC (since thread switching

can now can happen on any instruction
u Compiler generates GC maps (list of roots) at every instruction

n Green threads: Java threads are multiplexed on virtual
processors; JVM/runtime managed in coordination with OS
4A virtual processor is an OS pthread
4Require software support for switching (yielding the processor so

that other threads can take a turn) – yield points
4Compiler generates this support

u Generates GC maps (list of roots) at every yield point

JikesRVM Threading
• Java threads are multiplexed on virtual processors

n A virtual processor is an OS pthread
• Yield points

n Compiler generated
n Points in a method where a thread checks to see if it should

give up the processor (& give another thread a turn)
4Check a bit in a register, if set then call scheduler
4Set is caused by timer interrupt
4Method prologues
4Back edges of loops

x = 20
L1: if x>=10 goto L3

. . .
goto L1

L3: y = x + 5

x = 20
goto L1

L0: yeild
L1: if x>=10 goto L3

. . .
goto L0

L3: y = x + 5

Adaptive Optimization System Architecture

• Runtime measurements subsystem
• Controller
• Recompilation System

Adaptive Optimization System Architecture

Runtime Measurements Subsystem

• Gathers information about executing methods
• Summarizes the information
• Passes the summary to the event system
• Records the summary in a database

Runtime Measurements Subsystem

• Gathers information about executing methods
• Summarizes the information
• Passes the summary to the event system
• Records the summary in a database

• Information
n From the VM

4When it performs services for the program (thread switch, memory
allocation, compilation, etc.)

n From instrumentation
4Code added to the executing methods
4Methods in application and VM
4Invocation counters, edge, path, value profiling

n Hardware performance counters
4Cache misses (instruction/data)

Runtime Measurements Subsystem

• Information is stored in raw format
• Organizers

n Threads that periodically process the information, analyze it,
and format it appropriately for use by the controller

n Separates data generation from analysis
4Why?

Runtime Measurements Subsystem

• Information is stored in raw format
• Organizers

n Threads that periodically process the information, analyze it,
and format it appropriately for use by the controller

n Separates data generation from analysis
4Multiple organizers can process the same data (in different ways)
4Profiling code can then operate under rigid resource constraints

u Example: VM memory allocator profiler
u Can’t allocate memory
u Should complete quickly so as not to interrupt execution

4Overlap analysis with application execution

Controller
• Manages the adaptive optimization system
• Coordinates activities of runtime measurement subsystem

and the recompilation system
• Initiates all profiling activity by determining what profiling

n Should occur
n Under what conditions
n For how long

• Gets its information from the runtime measurement
subsystem and the AOS database

• Passes compilation decisions to the recompilation
subsystem (continue or change)

Sampling to Identify Hot Methods

• To estimate the time spent in a method
• Sample on yield points only (ie when a thread yields)

n Before switching threads, a counter associated with the
method that is executing (current) is incremented
4When a loop backedge is traversed a counter is incr’d.
4When a method prologue is entered

uA counter for the invoked method is incremented
uA counter for the calling method is incremented

• This information (and HW counter information) is stored
as raw data

Sampling

• Three threads access the raw data
n Method listener object (created by the hot method organzr)

4On each thread switch, records the currently active method in the
raw data buffer – runs on the application thread

4Wakes hot method organizer after sample size has been reached
n Hot method organizer

4Scans the method counter raw data to identify methods in which the
most time is spent – in the background

4“hot” if the percentage of samples attributed to that method
exceeds a controller-directed threshold

u And the method is not already compiled to maximum degree
4Enqueues an event in the event Q for each hot method (and %age)

n Decay organizer – decrements method counters (in bg)
4Gives more weight to recent samples (for hotness identification)

Recompilation

• Given a hot method, the controller decides if it is profitable
to recompile a method
n Cost model

4Expected time the method will execute if not recompiled
4Cost for recompiling the method at a certain optimization level
4Expected time the method will execute if recompiled

n Goal: minimize the expected future running time of the
method in the future

Recompilation

• Assumptions are made for all expected values
n Program will execute for twice the duration that it has

4Uses samples to estimate percentage of program time spent in the
method in question

n Offline measurements indicate the effectiveness of each
optimization level
4How much faster the method will run

n Cost of recompilation
4Linear model of compilation speed for each optimization level as a

function of method size.
4Calibrated offline

AOS Optimization: Feedback Directed Inlining

• Statistical sample of the method calls in a running
application
n Maintains an approximation of the dynamic call graph
n Identifies hot edges to inline
n Optimizing compiler uses this information for inline decisions

• On thread switch, an edge listener thread in
background walks the thread’s runtime stack (frames)
to identify the caller call site that init’d the call
n <caller, call site, callee> is inserted into a buffer
n When buffer is full, it wakes an organizer

Feedback Directed Inlining
• Dynamic call graph organizer

n Maintains the dynamic call graph
n Updates the weights on the graph edges
n Clears the buffer
n Restarts the listener
n Decay organizer periodically decays the edge weights

Feedback Directed Inlining
• Dynamic call graph organizer

n …
• Periodically invokes an adaptive inlining organizer

n Recomputes inlining decisions

n Identifies edges in the DCG whose percentage of samples
exceed an edge hotness threshold
4Added to an inlining rules data structure
4Consulted by the controller (to formulate compilation plans)
4All edges cause inlining to happen (subject to size constraints)

u Edges that go to 0 are removed and not inlined again

n Fewer at program start than later; past inlines are not lost

Performance of On-line Profiling (Adaptive Opt.)
JikesRVM

0

5

10

15

20

25

co
mpre

ss jes
s db

jav
ac

mpeg mtrt jac
k

AVG

To
ta

l T
im

e
in

 S
ec

on
ds

OptOnly

Adapt (on-line)

