|‘Bytecode translation via compilation

e Bytecode - HIR (abstract interp) + basic optimizations
e LIR - LIR (expand calls) + CSE + data dependencies
e LIR - MIR (instr. scheduling) + Register Allocation

* Prologue/epilogue added to method
= Prologue
= Epilogue

|‘Bytecode translation via compilation

e Bytecode - HIR (abstract interp) + basic optimizations
e LIR - LIR (expand calls) + CSE + data dependencies
e LIR - MIR (instr. scheduling) + Register Allocation

* Prologue/epilogue added to method

= Prologue
» Allocate runtime stack frame
» Save any nonvolatile registers
» Check whether a thread yield has been requested
» Lock if the method is synchronized
= Epilogue
» Restore any nonvolatile registers
» Store return value
» Unlock if the method is synchronized
» Deallocate the runtime stack frame
» Branch to return address

|‘Bytecode translation via compilation

e Bytecode - HIR (abstract interp) + basic optimizations
e LIR - LIR (expand calls) + CSE + data dependencies
e LIR - MIR (instr. scheduling) + Register Allocation

* Prologue/epilogue added to method
= Prologue
= Epilogue

e Store iIn memory at address

= Convert intermediate-instruction offsets to machine code offsets
» For exception handling
» For garbage collection (reference maps)

s Update VM tables (statics or VMTs) with address

= Jump and execute (JIT-compiled methods), fixing up the stack to
return to the caller of the JIT'd method

3

—

The JikesRVM Adaptive
Optimization System

‘Adaptive Compilation (aka Adaptive Optimization)

e Compiling at the method level is
= Slow — much slower than cost of interpreting one instruction
= Optimizing compiler (as efficient as it is) is very high ohead
e If we compile everything
= Big startup delay
= Big delay the first time we execute a method

e Goal: combine interpretation and compilation to get the
best of both “mixed mode”

m Interpret first: fast startup, no long pauses
» Identify the frequently executing methods (hot methods)

m Compile them (with some optimization) in the background
» Execute them the next time around

|‘ Multi-compiler (Mixed Mode) System

e Compile-only vs Compile+Interpret strategy

e Baseline — (could be replaced with interpretation) ...
= Simulates execution using the bytecode and operand stack
= Translates bytecodes to native code directly
= No optimization, no register allocation
= Performance much like an interpreter
= Fast compilation/interpretation, SLOW code

e Optimizing
= Translates bytecodes to HIR->LIR->MIR
= Optimization is performed on each level
= Linear scan register allocation
= Slow compilation/fast code

|‘JikesRVM Compiler Differences

e Compile Time/Speed comparison
e 500MHz RS6000, 4GB Mem, 1-processor

e Compile time: Bytecode bytes per millisecond
m Baseline: 378, L0:9.3, L1:5.7, L2:1.8

e Code speed normalized to baseline
= L0: 4.3, L1:6.1, L2:6.6

e EX: L2 is 209 times slower to compile & produces code
that is 6.6 times faster

‘JikesRVM Threading

e Two alternatives

= Native threads: Map each Java thread to an OS pthread; OS-
managed
» Less work for the runtime (simpler) for scheduling

» More work for the runtime to facilitate GC (since thread switching
can now can happen on any instruction

¢ Compiler generates GC maps (list of roots) at every instruction

= Green threads: Java threads are multiplexed on virtual
processors; JVM/runtime managed in coordination with OS
» A virtual processor is an OS pthread

» Require software support for switching (yielding the processor so
that other threads can take a turn) — yield points

» Compiler generates this support
¢ Generates GC maps (list of roots) at every yield point

‘JikesRVM Threading

e Java
m A

threads are multiplexed on virtual processors
virtual processor is an OS pthread

e Yield points
= Compiler generated

= Points in @ method where a thread checks to see if it should
give up the processor (& give another thread a turn)

» Check a bit in a register, if set then call scheduler
» Set is caused by timer interrupt
» Method prologues

» Back edges of loops x = 20
goto L1
x = 20 LO: yeild
Ll: if x>=10 goto L3 Ll: if x>=10 goto L3
) : : ﬁ * . .
goto L1 goto LO
L3: y=x+ 5 L3: y=x + 5

|‘ Adaptive Optimization System Architecture

e Runtime measurements subsystem
e Controller

e Recompilation System

|AdaDtive Optimization System Architecture

—

'('.7

X

Executing -l\l
Code

' B

Compilers

[Base,Opt,...] |

Profile

(" Organizer Event Queue

¥

Y - - Controller

Adaptive Optimization System

Information
Hatdware VM / Instrumented/ Instrumentation/
Performance Monitor Optimized Compilation
’ Code | (Plan
A o) —4 . v
- / Raw “~, " Raw ” Raw \ /_..---"' %
& / SEhs \ Database o T Th{')cads
= B _ .
v L Organ izer Organizer
E B —
=2 $
&
. Formatted \) /" Formatted "‘, O e R A o)
. Data ‘ Data .~ (" Compilation Queue)
. —— S0 ___.\ ___---—.—- m———-_ .

|‘ Runtime Measurements Subsystem

e Gathers information about executing methods
e Summarizes the information

e Passes the summary to the event system

e Records the summary in a database

‘Runtime Measurements Subsystem

e Gathers information about executing methods
e Summarizes the information

e Passes the summary to the event system

e Records the summary in a database

e Information

= From the VM

» When it performs services for the program (thread switch, memory
allocation, compilation, etc.)

= From instrumentation

» Code added to the executing methods

» Methods in application and VM

» Invocation counters, edge, path, value profiling
= Hardware performance counters

» Cache misses (instruction/data)

|‘ Runtime Measurements Subsystem

e Information is stored in raw format

e Organizers

= Threads that periodically process the information, analyze it,
and format it appropriately for use by the controller

= Separates data generation from analysis
» Why?

‘Runtime Measurements Subsystem

e Information is stored in raw format

e Organizers

= Threads that periodically process the information, analyze it,
and format it appropriately for use by the controller

= Separates data generation from analysis
» Multiple organizers can process the same data (in different ways)
» Profiling code can then operate under rigid resource constraints
¢ Example: VM memory allocator profiler

¢ Can’ t allocate memory
¢ Should complete quickly so as not to interrupt execution

» Overlap analysis with application execution

|‘ Controller

Manages the adaptive optimization system

Coordinates activities of runtime measurement subsystem
and the recompilation system

Initiates all profiling activity by determining what profiling
= Should occur

= Under what conditions

= For how long

Gets its information from the runtime measurement
subsystem and the AOS database

Passes compilation decisions to the recompilation
subsystem (continue or change)

|‘ Sampling to Identify Hot Methods

e To estimate the time spent in a method
e Sample on yield points only (ie when a thread yields)

n Before switching threads, a counter associated with the
method that is executing (current) is incremented

» When a loop backedge is traversed a counter is incr’ d.
» When a method prologue is entered
¢ A counter for the invoked method is incremented
¢ A counter for the calling method is incremented

e This information (and HW counter information) is stored
as raw data

‘Sampling

e Three threads access the raw data

s Method listener object (created by the hot method organzr)

» On each thread switch, records the currently active method in the
raw data buffer — runs on the application thread

» Wakes hot method organizer after sample size has been reached

= Hot method organizer

» Scans the method counter raw data to identify methods in which the
most time is spent — in the background

» “hot” if the percentage of samples attributed to that method
exceeds a controller-directed threshold

¢ And the method is not already compiled to maximum degree
» Enqueues an event in the event Q for each hot method (and %age)

= Decay organizer — decrements method counters (in bg)
» Gives more weight to recent samples (for hotness identification)

‘ Recompilation

e Given a hot method, the controller decides if it is profitable
to recompile a method

= Cost model
» Expected time the method will execute if not recompiled
» Cost for recompiling the method at a certain optimization level
» Expected time the method will execute if recompiled

= Goal: minimize the expected future running time of the
method in the future

‘ Recompilation

e Assumptions are made for all expected values

= Program will execute for twice the duration that it has

» Uses samples to estimate percentage of program time spent in the
method in question

s Offline measurements indicate the effectiveness of each
optimization level
» How much faster the method will run

= Cost of recompilation

» Linear model of compilation speed for each optimization level as a
function of method size.

» Calibrated offline

|‘ AOS Optimization: Feedback Directed Inlining

e Statistical sample of the method calls in a running
application
= Maintains an approximation of the dynamic call graph
= Identifies hot edges to inline
= Optimizing compiler uses this information for inline decisions

e On thread switch, an edge listener thread In
background walks the thread’ s runtime stack (frames)
to identify the caller call site that init’ d the call

m <caller, call site, callee> is inserted into a buffer
= When buffer is full, it wakes an organizer

|‘ Feedback Directed Inlining

e Dynamic call graph organizer
= Maintains the dynamic call graph
= Updates the weights on the graph edges
m Clears the buffer
m Restarts the listener
= Decay organizer periodically decays the edge weights

‘Feedback Directed Inlining

e Dynamic call graph organizer

e Periodically invokes an adaptive inlining organizer
= Recomputes inlining decisions

= Identifies edges in the DCG whose percentage of samples
exceed an edge hotness threshold
» Added to an inlining rules data structure
» Consulted by the controller (to formulate compilation plans)
» All edges cause inlining to happen (subject to size constraints)

¢ Edges that go to 0 are removed and not inlined again

s Fewer at program start than later; past inlines are not lost

‘Performance of On-line Profiling (Adaptive Opt.)
JikesRVM

0 25 O OptOnly
'E H Adapt (on-line)
9 20
o
= 15
e 10
i=
1L
: I
I_ 0 I I I I I I I
o o N0 O O & & O
2 % O > 22 \ O
&

