
1

Dynamic Compilation

Execution Options for Bytecode

•  Transfer bytecode; interpret bytecode at the target
n  Line by line execution, with some optimizations to reduce

the overhead of interpretation
! Indirect threading, direct threading, replication, superinstructions

•  Transfer bytecode; compile bytecode at the target
n  Translate multiple bytecode instructions to native code

! Method-level, path-level (trace compilation)
! Just-in-time compilation: wait to compile upon first invocation

u Only compile what you will execute

! Dynamic compilation: JIT + recompile at any time
u Improve performance by waiting to or re-compiling when you know

more about the behavior of the program

Execution Options for Bytecode

•  Transfer bytecode; interpret bytecode at the target
n  Line by line execution, with some optimizations

•  Transfer bytecode; compile bytecode at the target
n  Translate multiple bytecode instructions to native code

! Method-level, path-level (trace compilation); JIT vs Dynamic

•  Transfer native code: Ahead of Time (AoT) compilation
n  Requires whole program; compiles everything even the stuff

that doesn’t execute
n  Requires safety checks at target and greater trust

! Cannot verify type/memory safety at the target (easily)

n  Greatly simplifies runtime and reduces runtime overhead

Execution Options for Bytecode

•  Many systems use a combination
n  Interpretation

! Good if you only execute a path once

n  Dynamic compilation
! Good if you can amortize the cost of compilation (time/iteration)
! Complicates runtime, increases footprint

n  AOT compilation (system libs)
! Good for some things, but not for all (some runtime-based feedback-

directed optimization can improve performance significantly)
! Increases footprint (native code is significantly bigger than bytecode)

n  To try to achieve the best performance

5

JikesRVM – A Dynamic and Adaptive
Optimizing Compiler for Java

Let’s consider just the

optimizing compiler first…

6

JikesRVM Opt Compiler’s Intermediate Forms

•  3 different forms used for each method compilation
n  High-level intermediate representation (HIR)
n  Low-level intermediate representation (LIR)
n  Machine-level intermediate representations (MIR)

n  N-tuples (1 typed operator & n-1 typed operands)
! A generalization of 3 address code and quadruples

n  Most operands represent symbollic registers
! Can also represent physical registers, memory locations, constants,

branch targets and types.
! Distinct operators for similar operations on different primitive types
! Operands carry type information

7

JikesRVM Opt Compiler’s Intermediate Forms

•  Instructions are grouped by extended basic blocks
n  Non-extended basic blocks have 1-entry & 1-exit

n  Extended: single entry, multiple exit
n  Exception throws and method calls do not end a basic

block
n  Therefore, control may exit out the middle of a block
n  Better for optimizations (more instructions to work with)
n  Only a single entry however

•  Cached information for each IR
n  Auxiliary information (optional) used for optimization

8

HIR Translation: Find Extended BB’s (CFG)

static int f(int i) {
 int retn = i;
 if (i > 10) {

 retn += i*4;
 } else {

 retn += i+4;
 }
 return retn;
}

 0 iload_0
 1 istore_1
 2 iload_0
 3 bipush 10
 5 if_icmple 17
 8 iload_1
 9 iload_0
 10 iconst_4
 11 imul
 12 iadd
 13 istore_1
 14 goto 23
 17 iload_1
 18 iload_0
 19 iconst_4
 20 iadd
 21 iadd
 22 istore_1
 23 iload_1
 24 ireturn

Conditional branches: if_* X
 jump to X if condition is true
 else fall thru to next instr

Unconditional jumps: goto X
 jump to X

9

HIR Translation: Find Extended BB’s (CFG)

static int f(int i) {
 int retn = i;
 if (i > 10) {

 retn += i*4;
 } else {

 retn += i+4;
 }
 return retn;
}

 0 iload_0
 1 istore_1
 2 iload_0
 3 bipush 10
 5 if_icmple 17
 8 iload_1
 9 iload_0
 10 iconst_4
 11 imul
 12 iadd
 13 istore_1
 14 goto 23
 17 iload_1
 18 iload_0
 19 iconst_4
 20 iadd
 21 iadd
 22 istore_1
 23 iload_1
 24 ireturn

Fall-through
edge

10

HIR Generation (Abstract Interpretation)

•  Implementation of translation from bytecode to HIR
n  Find extended basic block structure
n  Construct exception table for the method
n  Abstract interpretation (local var types + operand stack)

worklist.add(entry_block, exception_handling_blocks[]);
while ((ele = worklist.remove()) != null) {

 stack = ele.getParentsStack(); /* values may differ but types

 must be the same. Multiple
 values make up a set. */

 insts = ele.getInstructions();
 interpret(insts, stack); /* create a symbollic stack and walk

 the code updating the stack */
 if (changed())

 worklist.add(ele.getDests()); /* put all possible
 destination blocks on the

 } worklist */

11

HIR Generation (Abstract Interpretation)
 0 iload_0
 1 istore_1
 2 iload_0
 3 bipush 10
 5 if_icmple 17
 8 iload_1
 9 iload_0
 10 iconst_4
 11 imul
 12 iadd
 13 istore_1
 14 goto 23
 17 iload_1
 18 iload_0
 19 iconst_4
 20 iadd
 21 iadd
 22 istore_1
 23 iload_1
 24 ireturn

interp(insts,stack)
VPC: virtual PC
process BB0
vpc = 0

0:ild R1,lv[0] vpc = 1
1:ist lv[1],R1 vpc = 2
2:ild R2,lv[0] vpc = 3
3:ildc R3,10 vpc = 5
5:ile 17,R3,R2 vpc = 8,17

store stack
add BB2,BB1 to worklist

stack
lv0 (int) 0:

1:

lv0 (int) 2:

10 (int) 3:

lv0 (int)

1

2

3

8,17

VPC
after

5:

5

BB0

BB1

BB2

BB3

Inst

12

HIR Optimizations

•  Goals
n  Reduce the size of the intermediate code
n  Remove redundancies

•  Copy & constant propagation
•  Dead code elimination
•  Inline short methods that are static or final

n  Application methods as well as JVM methods!

•  Redundant check & load elimination
•  Common subexpression elimination

13

Basic Blocks and Control Flow

•  Optimization and code generation can be performed on a
small (easy) or large (hard) piece of the control flow graph

n  Local - within a basic block
n  Global - across basic blocks within one method

(intraprocedural)
n  Inter-procedural - across methods, within one program

•  Terminology used for reads/writes of variables/registers
n  Defines (def) - when a register is written to

 Def r2: r2 = … //write
n  Use - when a register is read

 Use of r2: … = … r2 … //read

14

Copy & Constant Propagation

•  Copy propagation
n  If a variable value is assigned into a second variable

(register) and that second variable is used in subsequent
instructions, use the first variable and eliminate the copy

•  Constant propagation
n  Same as above only for constant values

r1 = a
r2 = r1
r3 = 10
if (r3<=r2) goto 17

//r2 & r3 are not
//used again

r1 = a
if (10<=r1) goto 17
//copy prop, remove r2
//constant prop, remove r3
//propagate 10

15

Local Variable Register Renaming & DCE

•  Local variable register renaming
n  Increases code scheduling (ordering) flexibility

•  Dead code elimination (DCE)
n  Remove instructions that have no affect

r1 = r2 + 1
A[1] = r1
r1 = r3 * 2
A[4] = r1

r27 = r2 + 1
A[1] = r27
r1 = r3 * 2
A[4] = r1

r1 = r3 * 2
r27 = r2 + 1
A[1] = r27
A[4] = r1

original intermediate
code

w/ registers
renamed

code reordered
(re-scheduled)

r1 = r2 + 1
r2 = r1
r3 = r2 * 2
// no more
// r2 uses
//in method

DCE

r1 = r2 + 1
r1 = r1
r3 = r1 * 2
// no more
//r2 uses
//in method

Copy
propagation

r1 = r2 + 1
r3 = r1 * 2

Def (define) of r2: r2 = …
Use of r2: … = … r2 …

16

Inlining

•  CFG merge

p = 0
i = 1

BB1:

p = p + i
param p; foo(1);

BB2:

p = 0
i = 5

BB3:

t1 = i * 2
i = t1 + 1
if i <= 20 goto BB2

BB4:

k = p*3 BB5:

. . . prologue:

static foo(int j) call

. . .
return

epilogue:

**basic blocks here
not extended basic blocks
(calls end a bb for simplicity)

. . . BB1:
…

. . . prologue:

…

. . . BBn:

17

Inlining

•  CFG merge

p = 0
i = 1

BB1:

p = p + i
param p;

BB2:

p = 0
i = 5

BB3:

t1 = i * 2
i = t1 + 1
if i <= 20 goto BB2

BB4:

k = p*3 BB5:

Was: static foo(int j)
param (j=1) stored

appropriately

**basic blocks here
not extended basic blocks
(calls end a bb for simplicity)

. . . BB1:
…

. . . prologue:

…

. . . BBn:

18

Redundant Check and Load Elimination

•  Redundant load elimination
n  Store values in registers to avoid unnecessary loads
n  A load of a local variable is a memory load

 0 iload_0 r1 = lv[0] r1 = lv[0]
 1 istore_1 lv[1] = r1 lv[1] = r1
 2 iload_0 r2 = lv[0] r2 = r1
 3 bipush 10 r3 = 10 r3 = 10
 5 if_icmple 17 if r2<=r3 goto 17 if r2<=r3 goto 17

r1 = lv[0]
lv[1] = r1
r3 = 10
if r1<=r3 goto 17

copy propagation

**assumes r2 is unused below

Redundant Check Elimination

•  Redundant check elimination
n  If it can be proven (statically) that one check is sufficient to

ensure that subsequent instructions will not violate language
rules, subsequent checks can be removed
! Array bounds checks

check(0<=i<10)
a[i] = r1
i = i + 1
check(0<=i<10)
a[i] = r1

check(0<=i<9)
a[i] = r1
i = i + 1
a[i] = r1

20

Redundant Check Elimination

•  Redundant check elimination
n  If it can be proven (statically) that one check is sufficient to

ensure that subsequent instructions will not violate language
rules, subsequent checks can be removed
! Array bounds checks

! Null checks (here foo has type C and is an object reference variable)

check(0<=i<10)
a[i] = r1
i = i + 1
check(0<=i<10)
a[i] = r1

check(0<=i<9)
a[i] = r1
i = i + 1
a[i] = r1

if foo==null goto 17
foo.fld = r1 //putfield C.fld.I
if foo==null goto 17
foo.meth() //invokevirtual C.meth()V

if foo==null goto 17
foo.fld = r1 //putfield
foo.meth() //invokevirtual-> call

21

Low-level Intermediate Representation (LIR)

•  Translate HIR of a method to LIR
n  Expands operations like calls/dispatches
n  Optimize

! Available field and method offsets (constants)
! Local common subexpression elimination

n  Construct data dependence graph for each basic block
! Graph of the dependencies in a basic block
! Nodes are LIR instructions, edges are dependence constraints

between two instructions
! Used for instruction reordering (scheduling, more optimizations)
! Used to generate the next intermediate form: MIR

c = a+b
…
A[j] = (a+b)*g

c = a+b
 …
A[j] = c*g

22

Low-level Intermediate Representation (LIR)

•  Construct dependence graph for each basic block
n  Nodes are LIR instructions, edges indicate dependencies
n  Dependence - a constraint that arises from the flow of data

between instructions
! True - read-after-write dependency (used for reordering insts)
! Anti - write-after-read dependency (used for reordering insts)
! Input - read-after-read dependency (use for array optimizations)

n  Control, synchronization, and exception edges are also added
n  Enables aggressive code reordering (next level of IR)

d = b * e

e = d + 1

d = e / 2

R1 = R3[R2]

R4 = R2 + 1

R2 = R4 * R1

23

Machine-level Intermediate Representation (MIR)

•  Convert IR to machine-specific IR
n  Assembly with infinite number of registers
n  Code generation (via Bottom-up Rewriting System (BURS))

! Map MIR (grammar) to native (grammar)
! Efficiency (cycles) computed using dynamic programming

•  Convert infinite symbollic registers to physical registers
n  Linear Scan greedy algorithm

24

Register Allocation

•  Symbollic registers are mapped to physical registers
n  Register allocation
n  Find the live ranges (aka live variable analysis)

! The range of instructions a register is used
! From the first assignment/write into the register (def)
! To the next def of that register

u Or to the last use (read) of the register if there is no next def

1) R3 = &a //param
2) R2 = c //param
3) R1 = R3[R2]
4) R4 = R2 + 1
5) R2 = R4 * R1
6) return R2

25

MIR and Beyond

•  Symbollic registers are mapped to physical registers
n  Register allocation
n  Find the live ranges (aka live variable analysis)

! All compilers do some form of this
! Its how they assign registers given this information that varies widely

R3 = &a //param
R2 = c //param
R1 = R3[R2]
R4 = R2 + 1
R2 = R4 * R1
return R2

R3 R2 R1 R4 R2

26

JikesRVM Linear Scan Register Allocator

•  Assign physical registers to symbollic registers - JikesRVM
n  Linear scan
n  Greedily allocate physical registers in a single linear time

scan of the symbolic registers’ live ranges
n  Its fast and does a decent job at allocating

•  Live interval [i,j] for variable v
n  There is no instruction i’ < i for which v is live
n  There is no instruction j’ >= j for which v is live
n  There may be intervals in [i,j] for which v is not live

! These are disregarded
! [i,j] is maximal live interval for v

n  Interference between variables is caught by interval overlap

27

JikesRVM Linear Scan Register Allocator

•  Algorithm
n  Given R available registers and a list of live intervals

n  Goal
! Allocate registers to as many intervals as possible
! Such that no 2 interfering intervals are allocated to the same register

n  All variables whose intervals are not allocated registers are stored
in memory (spilled)

28

Linear Scan Register Allocator

•  Algorithm
n  Store intervals in array in increasing interval_start order

n  Keep “active” list at each step through the array
! List of intervals that overlap the current point that have been placed

in registers
! In order of increasing interval_end

! Active list

A: [1,4]
B: [2,5]
C: [3,10]
D: [4,8]
E: [5,7]

<A,B> means A & B have overlapping intervals
are placed in registers and are currently active.

In addition, A’s end is smaller than B’s

29

Linear Scan Register Allocator

•  Algorithm
n  Store intervals in array in increasing interval_start order
n  Keep “active” list at each step through the array

n  Spill if number overlapped > number of available registers
! If the number of elements in the active list is greater than the

number of available registers
! Make one of the elements go to memory to get the data
! Spill the one with the largest interval_end

u Heuristic that says, if its end is way out there its going to overlap with
other intervals so spill it to allow the other intervals say in registers

n  Allocate as intervals become “active”

Linear Scan Register Allocator

•  Algorithm
n  Store intervals in array in increasing interval_start order
n  Keep “active” list at each step through the array
n  Spill if number overlapped > number of available registers
n  Allocate as intervals become “active”

A

B

C

D

E

1 2 3 4 5

<A,B>

<A,B,C> spill C: interval with largest interval_end

<A>

<B,D>

<E,D>

Available registers: 2

A: [1,4]
B: [2,5]
C: [3,10]
D: [4,8]
E: [5,7]

7 8 10

31

MIR and Beyond

•  Register Allocation
•  Prologue/epilogue added to method

n  Prologue
! Allocate stack frame
! Save any nonvolatile registers
! Check whether a thread yeild has been requested
! Lock if the method is synchronized

n  Epilogue
! Restore any nonvolatile registers
! Store return value
! Unlock if the method is synchronized
! Deallocate the stack frame
! Branch to return address

32

MIR And Beyond

•  MIR (now binary executable) is copied into the int[] of the
method

•  Convert intermediate-instruction offsets to machine code
offsets
n  For exception handling
n  For garbage collection (reference maps)

