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Dynamic Compilation 
 
 



Execution Options for Bytecode 

•  Transfer bytecode; interpret bytecode at the target 
n  Line by line execution, with some optimizations to reduce 

the overhead of interpretation 
! Indirect threading, direct threading, replication, superinstructions 

•  Transfer bytecode; compile bytecode at the target 
n  Translate multiple bytecode instructions to native code  

! Method-level, path-level (trace compilation) 
! Just-in-time compilation: wait to compile upon first invocation 

u Only compile what you will execute 

! Dynamic compilation: JIT + recompile at any time 
u Improve performance by waiting to or re-compiling when you know 

more about the behavior of the program 



Execution Options for Bytecode 

•  Transfer bytecode; interpret bytecode at the target 
n  Line by line execution, with some optimizations 

•  Transfer bytecode; compile bytecode at the target 
n  Translate multiple bytecode instructions to native code  

! Method-level, path-level (trace compilation); JIT vs Dynamic 

•  Transfer native code: Ahead of Time (AoT) compilation 
n  Requires whole program; compiles everything even the stuff 

that doesn’t execute 
n  Requires safety checks at target and greater trust 

! Cannot verify type/memory safety at the target (easily) 

n  Greatly simplifies runtime and reduces runtime overhead 



Execution Options for Bytecode 

•  Many systems use a combination 
n  Interpretation 

! Good if you only execute a path once 

n  Dynamic compilation 
! Good if you can amortize the cost of compilation (time/iteration) 
! Complicates runtime, increases footprint 

n  AOT compilation (system libs) 
! Good for some things, but not for all (some runtime-based feedback-

directed optimization can improve performance significantly) 
! Increases footprint (native code is significantly bigger than bytecode) 

n  To try to achieve the best performance  
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JikesRVM – A Dynamic and Adaptive 
Optimizing Compiler for Java 

 
Let’s consider just the  

optimizing compiler first… 
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JikesRVM Opt Compiler’s Intermediate Forms 

•  3 different forms used for each method compilation 
n  High-level intermediate representation (HIR) 
n  Low-level intermediate representation (LIR) 
n  Machine-level intermediate representations (MIR) 

n  N-tuples (1 typed operator & n-1 typed operands)  
! A generalization of 3 address code and quadruples 

n  Most operands represent symbollic registers 
! Can also represent physical registers, memory locations, constants, 

branch targets and types. 
! Distinct operators for similar operations on different primitive types 
! Operands carry type information 
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JikesRVM Opt Compiler’s Intermediate Forms 

•  Instructions are grouped by extended  basic blocks 
n  Non-extended basic blocks have 1-entry & 1-exit 

n  Extended: single entry, multiple exit 
n  Exception throws and method calls do not end a basic 

block 
n  Therefore, control may exit out the middle of a block 
n  Better for optimizations (more instructions to work with) 
n  Only a single entry however 

•  Cached information for each IR 
n  Auxiliary information (optional) used for optimization 
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HIR Translation: Find Extended BB’s (CFG) 

static int f(int i) {  
   int retn = i; 
   if (i > 10) { 

 retn += i*4; 
   } else { 

 retn += i+4; 
   }  
   return retn; 
} 

   0 iload_0 
   1 istore_1 
   2 iload_0 
   3 bipush 10 
   5 if_icmple 17 
   8 iload_1 
   9 iload_0 
  10 iconst_4 
  11 imul 
  12 iadd 
  13 istore_1 
  14 goto 23 
  17 iload_1 
  18 iload_0 
  19 iconst_4 
  20 iadd 
  21 iadd 
  22 istore_1 
  23 iload_1 
  24 ireturn 

Conditional branches: if_* X 
    jump to X if condition is true 
    else fall thru to next instr 
 
Unconditional jumps: goto X 
    jump to X 
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HIR Translation: Find Extended BB’s (CFG) 

static int f(int i) {  
   int retn = i; 
   if (i > 10) { 

 retn += i*4; 
   } else { 

 retn += i+4; 
   }  
   return retn; 
} 

   0 iload_0 
   1 istore_1 
   2 iload_0 
   3 bipush 10 
   5 if_icmple 17 
   8 iload_1 
   9 iload_0 
  10 iconst_4 
  11 imul 
  12 iadd 
  13 istore_1 
  14 goto 23 
  17 iload_1 
  18 iload_0 
  19 iconst_4 
  20 iadd 
  21 iadd 
  22 istore_1 
  23 iload_1 
  24 ireturn 

Fall-through 
edge 
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HIR Generation (Abstract Interpretation) 

•  Implementation of translation from bytecode to HIR 
n  Find extended basic block structure 
n  Construct exception table for the method 
n  Abstract interpretation (local var types + operand stack) 

worklist.add(entry_block, exception_handling_blocks[]); 
while ((ele = worklist.remove()) != null) { 
 
     stack = ele.getParentsStack();                /* values may differ but types 

         must be the same. Multiple 
         values make up a set. */ 

     insts = ele.getInstructions(); 
     interpret(insts, stack);                   /* create a symbollic stack and walk 

            the code updating the stack */ 
     if (changed()) 

 worklist.add(ele.getDests());          /* put all possible  
        destination blocks on the 

   }         worklist */ 
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HIR Generation (Abstract Interpretation) 
   0 iload_0 
   1 istore_1 
   2 iload_0 
   3 bipush 10 
   5 if_icmple 17 
   8 iload_1 
   9 iload_0 
  10 iconst_4 
  11 imul 
  12 iadd 
  13 istore_1 
  14 goto 23 
  17 iload_1 
  18 iload_0 
  19 iconst_4 
  20 iadd 
  21 iadd 
  22 istore_1 
  23 iload_1 
  24 ireturn 

interp(insts,stack) 
VPC: virtual PC 
process BB0 
vpc = 0 
 
0:ild R1,lv[0] vpc = 1 
1:ist lv[1],R1 vpc = 2 
2:ild R2,lv[0] vpc = 3 
3:ildc R3,10   vpc = 5 
5:ile 17,R3,R2 vpc = 8,17 
 
store stack 
add BB2,BB1 to worklist 

stack 
lv0 (int) 0: 

1: 

lv0 (int) 2: 

10 (int) 3: 

lv0 (int) 

1 

2 

3 

8,17 

VPC 
after 

5: 

5 

BB0 

BB1 

BB2 

BB3 

Inst 
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HIR Optimizations 

•  Goals 
n  Reduce the size of the intermediate code 
n  Remove redundancies 

•  Copy & constant propagation 
•  Dead code elimination 
•  Inline short methods that are static or final  

n  Application methods as well as JVM methods! 

•  Redundant check & load elimination  
•  Common subexpression elimination 
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Basic Blocks and Control Flow 

•  Optimization and code generation can be performed on a 
small (easy) or large (hard) piece of the control flow graph 

n  Local - within a basic block 
n  Global - across basic blocks within one method 

(intraprocedural) 
n  Inter-procedural - across methods, within one program 

•  Terminology used for reads/writes of variables/registers 
n  Defines (def)  -  when a register is written to 

  Def r2:    r2 = …  //write 
n  Use - when a register is read 

  Use of r2:   … = … r2 …  //read 
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Copy & Constant Propagation 

•  Copy propagation 
n  If a variable value is assigned into a second variable 

(register) and that second variable is used in subsequent 
instructions, use the first variable and eliminate the copy 

•  Constant propagation 
n  Same as above only for constant values 

r1 = a 
r2 = r1 
r3 = 10  
if (r3<=r2) goto 17 
 
//r2 & r3 are not    
//used again 

r1 = a 
if (10<=r1) goto 17  
//copy prop, remove r2 
//constant prop, remove r3 
//propagate 10 



15 

Local Variable Register Renaming & DCE 

•  Local variable register renaming 
n  Increases code scheduling (ordering) flexibility 

•  Dead code elimination (DCE) 
n  Remove instructions that have no affect 

r1 = r2 + 1 
A[1] = r1 
r1 = r3 * 2 
A[4] = r1 

r27 = r2 + 1 
A[1] = r27 
r1 = r3 * 2 
A[4] = r1 

r1 = r3 * 2 
r27 = r2 + 1 
A[1] = r27 
A[4] = r1 

original intermediate 
code 

w/ registers 
renamed 

code reordered 
(re-scheduled) 

r1 = r2 + 1 
r2 = r1 
r3 = r2 * 2 
// no more  
// r2 uses 
//in method 

DCE 

r1 = r2 + 1 
r1 = r1 
r3 = r1 * 2 
// no more  
//r2 uses  
//in method 

Copy 
propagation 

r1 = r2 + 1 
r3 = r1 * 2 

Def (define) of r2:     r2 = … 
Use of r2:       … = … r2 … 



16 

Inlining 

•  CFG merge 

p = 0 
i = 1 

BB1: 

p = p + i 
param p; foo(1); 

BB2: 

p = 0 
i = 5 

BB3: 

t1 = i * 2 
i = t1 + 1 
if i <= 20 goto BB2 

BB4: 

k = p*3 BB5: 

. . . prologue: 

static foo(int j) call 

. . . 
return 

epilogue: 

**basic blocks here 
not extended basic blocks 
(calls end a bb for simplicity) 

. . . BB1: 
… 

. . . prologue: 

… 

. . . BBn: 
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Inlining 

•  CFG merge 

p = 0 
i = 1 

BB1: 

p = p + i 
param p; 

BB2: 

p = 0 
i = 5 

BB3: 

t1 = i * 2 
i = t1 + 1 
if i <= 20 goto BB2 

BB4: 

k = p*3 BB5: 

Was: static foo(int j) 
param (j=1) stored  

appropriately 

**basic blocks here 
not extended basic blocks 
(calls end a bb for simplicity) 

. . . BB1: 
… 

. . . prologue: 

… 

. . . BBn: 
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Redundant Check and Load Elimination 

•  Redundant load elimination 
n  Store values in registers to avoid unnecessary loads 
n  A load of a local variable is a memory load 

   0 iload_0   r1 = lv[0]   r1 = lv[0]   
   1 istore_1   lv[1] = r1   lv[1] = r1 
   2 iload_0   r2 = lv[0]   r2 = r1 
   3 bipush 10   r3 = 10    r3 = 10 
   5 if_icmple 17   if r2<=r3 goto 17  if r2<=r3 goto 17 

r1 = lv[0]   
lv[1] = r1 
r3 = 10 
if r1<=r3 goto 17 

copy propagation  

**assumes r2 is unused below 



Redundant Check Elimination 

•  Redundant check elimination 
n  If it can be proven (statically) that one check is sufficient to 

ensure that subsequent instructions will not violate language 
rules, subsequent checks can be removed 
! Array bounds checks  

check(0<=i<10) 
a[i] = r1 
i = i + 1  
check(0<=i<10) 
a[i] = r1 

check(0<=i<9) 
a[i] = r1 
i = i + 1  
a[i] = r1 
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Redundant Check Elimination 

•  Redundant check elimination 
n  If it can be proven (statically) that one check is sufficient to 

ensure that subsequent instructions will not violate language 
rules, subsequent checks can be removed 
! Array bounds checks  

! Null checks  (here foo has type C and is an object reference variable) 

check(0<=i<10) 
a[i] = r1 
i = i + 1  
check(0<=i<10) 
a[i] = r1 

check(0<=i<9) 
a[i] = r1 
i = i + 1  
a[i] = r1 

if foo==null goto 17 
foo.fld = r1 //putfield C.fld.I 
if foo==null goto 17 
foo.meth() //invokevirtual C.meth()V 

if foo==null goto 17 
foo.fld = r1 //putfield 
foo.meth() //invokevirtual-> call 
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Low-level Intermediate Representation (LIR) 

•  Translate HIR of a method to LIR 
n  Expands operations like calls/dispatches 
n  Optimize  

! Available field and method offsets (constants) 
! Local common subexpression elimination 

n  Construct data dependence graph for each basic block 
! Graph of the dependencies in a basic block 
! Nodes are LIR instructions, edges are dependence constraints 

between two instructions 
! Used for instruction reordering (scheduling, more optimizations) 
! Used to generate the next intermediate form: MIR 

c = a+b  
…  
A[j] = (a+b)*g 
 
         
c = a+b 
 …  
A[j] = c*g 



22 

Low-level Intermediate Representation (LIR) 

•  Construct dependence graph for each basic block 
n  Nodes are LIR instructions, edges indicate dependencies 
n  Dependence - a constraint that arises from the flow of data 

between instructions 
! True - read-after-write dependency (used for reordering insts) 
! Anti - write-after-read dependency (used for reordering insts) 
! Input - read-after-read dependency (use for array optimizations) 

n  Control, synchronization, and exception edges are also added 
n  Enables aggressive code reordering (next level of IR) 

d = b * e 
 
e = d + 1 
 
d = e / 2 

R1 = R3[R2] 
 
R4 = R2 + 1 
 
R2 = R4 * R1 
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Machine-level Intermediate Representation (MIR) 

•  Convert IR to machine-specific IR 
n  Assembly with infinite number of registers 
n  Code generation (via Bottom-up Rewriting System (BURS)) 

! Map MIR (grammar) to native (grammar) 
! Efficiency (cycles) computed using dynamic programming 

•  Convert infinite symbollic registers to physical registers 
n  Linear Scan greedy algorithm  
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Register Allocation 

•  Symbollic registers are mapped to physical registers 
n  Register allocation 
n  Find the live ranges (aka live variable analysis) 

! The range of instructions a register is used  
! From the first assignment/write into the register (def) 
! To the next def of that register  

u Or to the last use (read) of the register if there is no next def 

 

1)  R3 = &a //param 
2)  R2 = c  //param 
3)  R1 = R3[R2] 
4)  R4 = R2 + 1 
5)  R2 = R4 * R1 
6)  return R2 
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MIR and Beyond 

•  Symbollic registers are mapped to physical registers 
n  Register allocation 
n  Find the live ranges (aka live variable analysis) 

! All compilers do some form of this 
! Its how they assign registers given this information that varies widely 

 

R3 = &a //param 
R2 = c  //param 
R1 = R3[R2] 
R4 = R2 + 1 
R2 = R4 * R1 
return R2 

R3 R2 R1 R4 R2 
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JikesRVM Linear Scan Register Allocator 

•  Assign physical registers to symbollic registers - JikesRVM 
n  Linear scan 
n  Greedily allocate physical registers in a single linear time 

scan of the symbolic registers’ live ranges 
n  Its fast and does a decent job at allocating 

•  Live interval [i,j] for variable v 
n  There is no instruction i’ < i for which v is live 
n  There is no instruction j’ >= j for which v is live 
n  There may be intervals in [i,j] for which v is not live 

! These are disregarded 
! [i,j] is maximal live interval for v 

n  Interference between variables is caught by interval overlap 
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JikesRVM Linear Scan Register Allocator 

•  Algorithm 
n  Given R available registers and a list of live intervals 

n  Goal  
! Allocate registers to as many intervals as possible  
! Such that no 2 interfering intervals are allocated to the same register 

n  All variables whose intervals are not allocated registers are stored 
in memory (spilled) 
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Linear Scan Register Allocator 

•  Algorithm 
n  Store intervals in array in increasing interval_start order 

n  Keep “active” list at each step through the array 
! List of intervals that overlap the current point that have been placed 

in registers 
! In order of increasing interval_end 

! Active list 

 

A:  [1,4] 
B:  [2,5] 
C:  [3,10] 
D:  [4,8] 
E:  [5,7] 

<A,B> means A & B have overlapping intervals 
are placed in registers and are currently active. 

In addition, A’s end is smaller than B’s 
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Linear Scan Register Allocator 

•  Algorithm 
n  Store intervals in array in increasing interval_start order 
n  Keep “active” list at each step through the array 

n  Spill if number overlapped > number of available registers 
! If the number of elements in the active list is greater than the 

number of available registers 
! Make one of the elements go to memory to get the data 
! Spill the one with the largest interval_end 

u Heuristic that says, if its end is way out there its going to overlap with 
other intervals so spill it to allow the other intervals say in registers 

n  Allocate as intervals become “active” 



Linear Scan Register Allocator 

•  Algorithm 
n  Store intervals in array in increasing interval_start order 
n  Keep “active” list at each step through the array 
n  Spill if number overlapped > number of available registers 
n  Allocate as intervals become “active” 

A 

B 

C 

D 

E 

1 2 3 4 5 

<A,B> 

<A,B,C> spill C: interval with largest interval_end 

<A> 

<B,D> 

<E,D> 

Available registers: 2 

A:  [1,4] 
B:  [2,5] 
C:  [3,10] 
D:  [4,8] 
E:  [5,7] 

7 8 10 
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MIR and Beyond 

•  Register Allocation 
•  Prologue/epilogue added to method 

n  Prologue  
! Allocate stack frame 
! Save any nonvolatile registers 
! Check whether a thread yeild has been requested 
! Lock if the method is synchronized 

n  Epilogue 
! Restore any nonvolatile registers 
! Store return value 
! Unlock if the method is synchronized 
! Deallocate the stack frame 
! Branch to return address 
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MIR And Beyond 

•  MIR (now binary executable) is copied into the int[] of the 
method 

•  Convert intermediate-instruction offsets to machine code 
offsets 
n  For exception handling 
n  For garbage collection (reference maps) 


