
Interpretation and Interpreter Optimization

Bytecode ISA

•  JVM
n  Typed instructions
n  Opcode: 1-byte wide (253 are used)
n  Data: zero or more values to be operated on (operands)

•  MSIL
n  Typed instructions
n  Opcode is 2-bytes (64K possible)

•  Python
n  113 opcodes (42 with arguments and 71 without)

•  All use operand stack for one or more of their operands
•  Translator must translate this ISA to native code

Translation

•  Interpretation
n  Line-by-line execution of a program

! If a statement is in a loop, the state-
ment is processed repeatedly

n  For each instruction X, parse X and
implement its semantics using another
language
! Instructions may be broken down into

multiple operations
! There is a handler for each operation

 static void foo();
 Code:
 0: new #7 // class C
 3: dup
 4: invokespecial #8 // Method "<init>":()V
 7: astore_0
 8: aload_0
 9: invokevirtual #9 // Method mc:()I
 12: istore_1
 13: iload_1
 14: ifle 40
 17: iload_1
 18: getstatic #10 // Field fielda:I
 21: if_icmple 40
 24: aload_0
 25: dup
 26: getfield #5 // Field fieldc:I
 29: iload_1
 30: iinc 1, -1
 33: iadd
 34: putfield #5 // Field fieldc:I
 37: goto 13
 40: return static void foo() {

 C tmpA3 = new C();
 int k = tmpA3.mc();
 while (k > 0 && k > C.fielda) {
 tmpA3.fieldc += k--;
 }
 }

Translation

•  Interpretation
n  Line-by-line execution of a program

! If a statement is in a loop, the statement is processed repeatedly

n  For each instruction X, parse X and implement its semantics using
another language
! Instructions may be broken down into multiple operations
! There is a handler for each operation

Read/parse	next	instruc0on	(iadd),	call	handler	
iadd	handler:	
				pop	tos	into	variable	x	
				pop	tos	into	variable	y	
				z	=	x+y	
				push	z	on	tos	
	
Interpreter/run0me	maintains	the	operand	stack	
for	each	method	in	memory	along	with	other	
data	structures	(sta0cs	table)	

Translation

•  Interpretation
n  Line-by-line execution of a program

! If a statement is in a loop, the statement is processed repeatedly

•  Benefits
n  Great for fast prototyping of new languages/instructions
n  Can be used to define operational semantics of a language (e.g. Ruby)
n  Portable if written in a highlevel language -- simply recompile runtime

! Compiler VM generates native (binary) code for a particular architecture
u Requires porting (“retargeting”) for each architecture

n  Much simpler, easier to debug, construct
n  Smaller footprint - memory, code -- commonly used for embedded

devices
n  Interpreting code is much faster than dynamic/JIT compiling (the

translation process)
n  Adding tools (profiling, optimizers, debuggers) is easy

Translation

•  Interpretation
n  Line-by-line execution of a program

! If a statement is in a loop, the statement is processed repeatedly
! Fastest interpreters are 5-10x slower than executable native code
! Could be 100x or more however for some programs

n  All bytecode languages (representations) can be executed this way

n  Implementation
! Decode and dispatch loop – AKA switch-dispatch interpretation

Interpretation (Python)

for(;;){	
		//check	for	thread-switching/signals	..	etc.	
		...	
		//read	next	VM	instruc0on	from	bytecode	file,	extract	opcode	
		opcode	=	NEXTOP();	
		//	opcode	has	an	arg	?	
		if	(HAS_ARG(opcode))	
												oparg	=	NEXTARG();	
	
		switch	(opcode)	{	
		case	NOP:	break;	
		case	LOAD_FAST:	…	break;	
		...	
		}	
}	

Bytecode ISA

•  JVM
n  Typed instructions
n  Opcode: 1-byte wide (253 are used)
n  Data: zero or more values to be operated on (operands)

•  MSIL
n  Typed instructions
n  Opcode is 2-bytes (64K possible)

•  Python
n  113 opcodes (42 with arguments and 71 without)

•  All use operand stack for one or more of their operands
•  Translator must translate this ISA to native code

Control and Data Flow Comparison
Interpreter
routines

AKA handlers

Dispatch
loop

Byte
code

Byte
code

Native execution Decode & Dispatch

Control flow

Data flow (read source instructions)

•  Contains many branches (both
 direct and indirect)

•  Direct == target in instr
•  Indirect == target in

register (need lookup)

Control and Data Flow Comparison
Interpreter
routines

AKA handlers

Dispatch
loop

Byte
code

Byte
code

Native execution Decode & Dispatch

Control flow

Data flow (read source instructions)

•  Contains many branches (both
 direct and indirect)

i2 is a conditional branch

Hardware predicts its not taken, ie
that the fallthrough instr i3 is next

CPU computes branch target in EX
 - and finds out that its TAKEN!
 - i3 and i4 are mistakes! a MISS

Start correct instruction ia

Flush i3 and i4 (bubble in pipeline)

CPU

(Un-)Conditional Branches
•  Contains many branches (both
 direct and indirect)

i2 is a conditional branch

Hardware predicts its not taken, ie
that the fallthrough instr i3 is next

CPU computes branch target in EX
 - and finds out that its TAKEN!
 - i3 and i4 are mistakes! a MISS

Start correct instruction ia

Flush i3 and i4 (bubble in pipeline)

CPU
p = 0
i = 1

BB1:

p = p + i
if p <= 60 goto BB4

BB2:

…
goto BB4

BB3:

… BB4:

fall-through
edge

jump
edge

i2

Interpreter: Decode and Dispatch
Interpreter
routines

AKA handlers

Dispatch
loop

Byte
code

Decode & Dispatch

Control flow

Data flow (read source instructions)

•  Contains many branches (both
 direct and indirect)

•  Typically difficult to predict:

•  Switch-case (register
 indirect)

•  Call to interp routine

•  Return from interp return
 (indirect branch)

•  Loop end test/branch

//interpreter	loop	
for(;;){	
		//checks	
		...	
		//read/parse	next		
		//bytecode	instr	
		opcode	=	NEXTOP();	
		switch	(opcode)	{	
		case	NOP:	break;	
		case	IADD:		
							iadd_handler();		
							break;	
		}	
}	

Interpreter: Decode and Dispatch
Interpreter
routines

AKA handlers

Dispatch
loop

Byte
code

Decode & Dispatch

Control flow

Data flow (read source instructions)

•  Contains many branches (both
 direct and indirect)

•  Typically difficult to predict:

•  Switch-case (register
 indirect)

•  Call to interp routine

•  Return from interp return
 (indirect branch)

•  Loop end test/branch

•  Optimizations are needed to
 speed up the process

•  Reduce number of dispatches
•  Reduce the overhead of a
 single dispatch

•  the interpreter loop
•  fewer branches
•  more predictable
 branches

//interpreter	loop	
for(;;){	
		//checks	
		...	
		//read/parse	next		
		//bytecode	instr	
		opcode	=	NEXTOP();	
		switch	(opcode)	{	
		case	NOP:	break;	
		case	IADD:		
							iadd_handler();		
							break;	
		}	
}	

Indirect Threading (ITI)

 Switch-Case:
 inst = getFirstInst();
 while((inst!=null)
 {
 opcode = getOpcode(inst);
 switch (opcode){
 case opA:
 opA_handler(inst);
 break;
 case opB:
 opB_handler(inst);
 break;
 …
 }
 inst = getNextInst(inst);
 }
 finish();

Optimization 1:

 - get rid of the outer loop (test/branch per
each instruction interpreted)

 - get rid of the function calls (and their
returns) for each opcode

 1-call, 1-return per instruction interpreted
 Returns are typically indirect jumps

 Get rid of the return
 Replace the call

To enable this: Put all of the handler code at
specific/ known locations in memory, and put their
addresses in a lookup table (indexed by opcode)

 - inline the handlers into one long interpreter
code body

Indirect Threading (ITI)

 Switch-Case:
 inst = getFirstInst();
 while((inst!=null)
 {
 opcode = getOpcode(inst);
 switch (opcode){
 case opA:
 opA_handler(inst);
 break;
 case opB:
 opB_handler(inst);
 break;
 …
 }
 inst = getNextInst(inst);
 }
 finish();

ITI:
 inst = getFirstInst();
 if (inst==null) finish();
 opcode = getOpcode(inst);
 handler = handlers[opcode];
 goto *handler;
 …
 OPA_LABEL:
 … /* implement opcode A */
 inst = getNextInst(inst);
 if (inst==null) finish();
 opcode = getOpcode(inst);
 handler = handlers[opcode];
 goto *handler
 OPB_LABEL:
 …

Eliminates: switch-case (register indirect) & loop
Improves: prediction for handler target (if opcodes
occur in the same sequences – which they do)
Adds: Lookup table for handler address

Direct Threading (DTI)

 Switch-Case:
 inst = getFirstInst();
 while((inst!=null)
 {
 opcode = getOpcode(inst);
 switch (opcode){
 case opA:
 opA_handler(inst);
 break;
 case opB:
 opB_handler(inst);
 break;
 …
 }
 inst = getNextInst(inst);
 }
 finish();

 Direct Threading (DTI):
 inst = getFirstInst();
 if (inst==null) finish();
 handler = getOpcode(inst);
 goto *handler;
 …
 OPA_LABEL:
 … /* implement opcode A */
 inst = getNextInst(inst);
 if (inst==null) finish();
 handler= getOpcode(inst);
 goto *handler;
 OPB_LABEL:
 …

Eliminates: lookup table for handler address
Gets: same benefits as ITI
Adds: Translation of each instruction executed
(once): opcode_operands -> handlerAddr_operands
 -- necessarily increases the instruction size
 from 1 byte to 4 bytes

iadd -> 0x60 -> 0x8852771A

Direct Threading (DTI)

 Switch-Case:
 inst = getFirstInst();
 while((inst!=null)
 {
 opcode = getOpcode(inst);
 switch (opcode){
 case opA:
 opA_handler(inst);
 break;
 case opB:
 opB_handler(inst);
 break;
 …
 }
 inst = getNextInst(inst);
 }
 finish();

 Direct Threading (DTI):
 inst = getFirstInst();
 if (inst==null) finish();
 handler = getOpcode(inst);
 goto *handler;
 …
 OPA_LABEL:
 … /* implement opcode A */
 inst = getNextInst(inst);
 if (inst==null) finish();
 handler= getOpcode(inst);
 goto *handler;
 OPB_LABEL:
 …

Eliminates: lookup table for handler address
Gets: same benefits as ITI
Adds: Translation of each instruction executed
(once): opcode_operands -> handlerAddr_operands
 -- necessarily increases the instruction size
 from 1 byte to 4 bytes

Requires GNU C and lables-as-

values (not supported by ANSI C)

Control and Data Flow Comparison
Interpreter
routines

Interpreter
routines

Dispatch
loop

Byte
code

Byte
code

Byte
code

Native execution Decode & Dispatch Direct Threaded Interpretation

Control flow Data flow (read source instructions)

Interesting Interpreter Measurements: % Time Spent

!

"!

#!

$!

%!

&!

'!

(!

)!

*!

"!!

+,
-./

0.
1+
-

23
+/
-

42
.56
74 81

6

37
9.
:0

;<
-3
1,

.=
5,
:4
>
6?
:

05
,+
/<
-/
44
7

8+
,,
@=
23

8+
7-
+

?
+,
:4
.0
/1
-

,0
1:
<

,7
54
A4

,7
54
A4
05
-7

6+
/-
5+
.7
=?
7

/4
2=
/7
5A
4

/4
B4
>:
,+

B4
1?
4+
,

CDEFGGH CDEIJKLMDN FMO GP GLQNI

!

"!

#!

$!

%!

&!

'!

(!

)!

*!

"!!

#+
,$

-.
/0
1,

23
45
67

28
97
04
:

;2
3+<
3=
7

>0
23
45
67

93
0/
=8
+=
77
;

</
00
5>
4:

</
;+
/

?
/0
-7
69
=,
+

09
,-
8

0;
37
@7

0;
37
@7
93
+;

2/
=+
3/
6;
>?
;

=7
4>
=;
3@
7

=7
17
A-
0/

17
,?
7/
0

BCDEFFG BCDHIJKLCM ELN FO FKPMH

Java

Python

Interesting Interpreter Measurements: Dispatch Rate

!

!"#

!"$

!"%

!"&

'

'"#

'"$

'"%

'"&

#

()
*+
,-
.,
//
0

1+
**
23
45

1+
0.
+

6
+*
7/
8(
,9
.

*(
97
-

*0
)/
:/

*0
)/
:/
()
.0

;+
,.
)+
80
36
0

,/
43
,0
):
/

,/
</
=7
*+

>;-.59* ?9.0;9.

•  More cycles per dispatch for Python bytecodes
•  Type-generic instructions (lots of work needed from interpreter)

•  EX: BINARY_ADD – add’s two objects, different semantics
depending on object types

•  Built-in semantics: EX: print for lists, tuples, strings
•  Java breaks this up into individual bytecodes/calls libs

#
of

 D
is

pa
tc

he
s

pe
r

10
0

cy
cl

es

Interpretation – Interesting points made in the paper

•  Flat sequence layout of operations vs graph layout
n  Flat sequence is easier to manipulate – fast
n  VM instructions

•  “Level” of operations
n  Amount of interpreter work per amount of useful work

! Impacts the difference in performance between the interpreter and the
equivalent native code execution

n  This work targets LOW LEVEL bytecodes
! Those with high dispatch-to-work ratios (dispatch rate)
! Note that the Python numbers presented earlier

u Python has low dispatch rates, so interpreter overhead is in the noise
u That is, these optimizations (that target the interpreter ovehead) aren’t

likely to have much impact

Interpretation – Interesting points made in the paper

•  “Level” of operations
n  Amount of interpreter work per amount of useful work

! Impacts the difference in performance between the interpreter and the
equivalent native code execution

u Large number of simple operations
-  Interpreters are slowest relative to native code execution

n  JVM vs GForth
! Dispatch-to-real-work ratio of GForth is higher (simpler VM instructions)

u JVM – fewer dispatches for same amount of work
! JVM: more time outside of interpreter loop (GC, verification)
! GForth caches topmost operand stack element in a register
! 16.5% of retired machine instructions are ind. branches (6.1% for JVM)

u Opts that reduce branch misses will benefit GForth more than JVM

Interpretation – Interesting points made in the paper
(Continued)

•  The biggest problem with interpretation on performance
n  Branch mispredictions
n  The deeper the pipeline the worse the cost
n  Again for bytecodes with high dispatch rates

n  And the overhead of the dispatch loop
! Two sources of overhead: Number of dispatches, cost per dispatch

•  Solutions: replication, superinstructions

•  Each instruction has its own dispatch body
n  Dynamic – make a copy for each instruction, flush icache dynamically

! Concatenation of dispatch bodies
! Requires that code be relocatable
! Note that this is one dispatch body for each unique instruction in a program

u Repeated execution of the same instruction will use the same dispatch
routine

Interpreter Optimization: Dynamic Replication

Interpreter Optimization: Static Replication
•  Each instruction has its own dispatch body

n  Static – make multiple copies for each operation, reroute execution of
instructions to different copies --- use a greedy algorithm for rerouting
! Note that this has no notion of a program – this is done at interpreter

build time
u So we have to guess how many copies of each dispatch routine to make
u Figuring this out: Run a bunch of programs, profile them, collect data

on the most important instructions and the number of different
instances they are likely to have

Interpreter Optimization: Static Replication

•  Each instruction has its own dispatch body
n  Static – make multiple copies for each operation, reroute execution of

instructions to different copies --- use a greedy algorithm for rerouting

! compiler can optimize across component instructions (keep stack items in
registers, combine stack/pointer updates of components, instr. Scheduling

! Same replic/superinstr set across all programs/inputs (dynamic is customized
for current program/input)

! Note that this has no notion of a program – this is done at interpreter

build time

Interpreter Optimization: Replication

•  Each instruction has its own dispatch body
n  Dynamic – make a copy for each instruction, flush icache dynamically

! Performed as the program is run

n  Static – make multiple copies for each operation, reroute execution of
instructions to different copies --- use a greedy algorithm for rerouting
! Performed at interpreter build time

•  Much more executable code
•  Same number of dispatches (# of VM instructions aka operations)
•  Same number of indirect branches

n  But more predictable
! 1 target each so will hit on repeated execution
! Assuming no conflict/capacity misses

Interpreter Optimization: Superinstructions

•  Identify basic blocks
n  Straight-line code
n  That ends with some control flow

! Typically branch, jump, or call
! Exceptions are control flow but they occur in high-level languages for many

many instructions so, these instructions typically do not end basic blocks
u If they did, there wouldn’t be any instructions to work with/combine

38

Control-Flow Graph (CFG)

•  Organizing of the intermediate code in a way that enables efficient
analysis and modification

•  A simplified representation of a program
n  Function-level
n  But then functions can be linked

•  The graph consists of nodes
n  Basic blocks

! Pieces of straight-line code
! One entry into it at the top
! One exit out of it at the bottom
! No instructions that change control flow inside

n  And edges
! Control flow edges that show how control can change

x = a * 5
y = z[x]
a = a + 1

basic block

39

Basic Blocks and Control Flow

x = 20;
while (x < 10) {
 x = x - 1;
 A[x] = 10;
 if (x == 4) x = x - 2;
}
y = x + 5;

1) x = 20
2) if x>=10 goto 8
3) x = x - 1
4) A[x] = 10
5) if x<>4 goto 7
6) x = x - 2
7) goto 2
8) y = x + 5

Source code
Intermediate code (IR/IF)

x = 20 BB1:

if x>=10 goto B4 BB2:

X = x-1
A[x]=10
If x<>4 goto BB6

BB3:

x = x-2 BB5:

goto BB2 BB6:

y = x+5 BB4:

40

Finding Basic Blocks

•  Find set of leaders Here: tuples are instructions

n  1) The first tuple of a method is a leader
n  2) Tuple L is a leader if there is a tuple:

n  3) Tuple M is a leader if it immediately follows a tuple:

•  A basic block consists of a leader and all of the following tuples
except the next leader

goto L if x relop y goto L
OR

goto L if x relop y goto L OR

41

Finding Basic Blocks

•  Find set of leaders
n  1) The first tuple of a method is a leader
n  2) Tuple L is a leader if there is a tuple that jumps to L
n  3) Tuple L is a leader if it immediately follows a tuple that branches

(unconditionally or conditionally)

p = 0;
i = 1;
do {
 p += i;
 if (p>60){
 p = 0; i = 5;
 }
 i = i*2 + 1;
}
k = p*3;

Source code

1) p = 0
2) i = 1
3) p = p + i
4) if p <= 60 goto 7
5) p = 0
6) i = 5
7) t1 = i * 2
8) i = t1 + 1
9) if i <= 20 goto 3
10)k = p * 3

Intermediate code (IR/IF)

42

Finding Basic Blocks

•  Find set of leaders
n  1) The first tuple of a method is a leader
n  2) Tuple L is a leader if there is a tuple that jumps to L
n  3) Tuple L is a leader if it immediately follows a tuple that branches

(unconditionally or conditionally)

p = 0;
i = 1;
do {
 p += i;
 if (p>60){
 p = 0; i = 5;
 }
 i = i*2 + 1;
}
k = p*3;

Source code

1) p = 0
2) i = 1
3) p = p + i
4) if p<=60 goto 7
5) p = 0
6) i = 5
7) t1 = i * 2
8) i = t1 + 1
9) if i<=20 goto 3
10)k = p * 3

Intermediate code (IR/IF)

Leader (rule 1)

Leader (rule 2)

Leader (rule 3)

43

Basic Blocks and Control Flow Example

p = 0
i = 1

BB1:

p = p + i
if p <= 60 goto BB4

BB2:

p = 0
i = 5

BB3:

t1 = i * 2
i = t1 + 1
if i <= 20 goto BB2

BB4:

k = p*3 BB5:

fall-through
edge

jump
edge

Interpreter Optimization: Superinstructions

•  Identify basic blocks
n  Straight-line code
n  That ends with some control flow

! Typically branch, jump, or call
! Exceptions are control flow but they occur in high-level languages for many

many instructions so, these instructions typically do not end basic blocks
u If they did, there wouldn’t be any instructions to work with/combine

•  For each basic block
n  Make a dispatch body (superinstruction)
n  Remove dispatch code in between VM instructions within block

! Increment VM program counter (PC)
! Extract address from VM instruction, jump to address

•  For identical basic blocks
n  Use same superinstruction (cost = less predictable branch into/out of)
n  Use replication in combination

Performance Results / Findings

•  More benefit for GForth than for JVM
n  JVM has fewer dispatches to begin with for same amount of work

! Bytecode instructions are “lower-level” – for GForth than for JVM
! Instructions have types associated with them – for both

•  Results
n  Many icache misses avoided, improves performance (up to 4.5X for

GForth, 2.7X for JVM)
! Compared to dynamic compilation: 3-5X for GForth; 9.5X for JVM

n  Dynamic is better
! Static does ok for GForth but not JVM

n  Combination of replication & superinstructions is better

•  Different architectures (w/ different BTBs studied)
n  Using hardware performance counters/monitors
n  Also simulation of different BTBs studied (another paper)

