E—

Interpretation and Interpreter Optimization



‘ Bytecode ISA

e JVM
= Typed instructions
s Opcode: 1-byte wide (253 are used)
s Data: zero or more values to be operated on (operands)

e MSIL
= Typed instructions
s Opcode is 2-bytes (64K possible)
e Python
m 113 opcodes (42 with arguments and 71 without)

e All use operand stack for one or more of their operands
e Translator must translate this ISA to native code



‘ Tra nSIat|On static void foo();
Code:

e Interpretation

= Line-by-line execution of a program

» If a statement is in a loop, the state-
ment is processed repeatedly

s For each instruction X, parse X and
implement its semantics using another
language

» Instructions may be broken down into
multiple operations

» There is a handler for each operation

static void foo() {
C tmpA3 = new C();
int k = tmpA3.mc();
while (k > 0 && k > C.fielda) {
tmpA3.fieldc += k--;

}
}

O.

3:
4.
7:
8:

9:
12:
13:
14:
17:
18:
21
24:
25:
26:
29:
30:
33:

34:
37:
40:

new #7 /l class C

dup

invokespecial #8 // Method "<init>":()V
astore 0

aload 0O

invokevirtual #9 // Method mc:()I
istore 1

iload_1

ifle 40

iload 1

getstatic #10 // Field fielda:l

- if_icmple 40

aload 0
dup
getfield
iload_1
iinc 1, -1
iadd

putfield  #5
goto 13
return

#5 // Field fieldc:|

// Field fieldc:l



‘ Translation

e Interpretation

= Line-by-line execution of a program
» If a statement is in a loop, the statement is processed repeatedly

m For each instruction X, parse X and implement its semantics using
another language

» Instructions may be broken down into multiple operations
» There is a handler for each operation

Read/parse next instruction (iadd), call handler
iadd handler:

pop tos into variable x

pop tos into variable y

Z = X+y

push z on tos

Interpreter/runtime maintains the operand stack
for each method in memory along with other
data structures (statics table)



‘ Translation

e Interpretation

Line-by-line execution of a program
» If a statement is in a loop, the statement is processed repeatedly

e Benefits

Great for fast prototyping of new languages/instructions
Can be used to define operational semantics of a language (e.g. Ruby)

Portable if written in a highlevel language -- simply recompile runtime
» Compiler VM generates native (binary) code for a particular architecture
¢ Requires porting (“retargeting”) for each architecture

Much simpler, easier to debug, construct

Smaller footprint - memory, code -- commonly used for embedded
devices

Interpreting code is much faster than dynamic/JIT compiling (the
translation process)

Adding tools (profiling, optimizers, debuggers) is easy



‘ Translation

e Interpretation

= Line-by-line execution of a program
» If a statement is in a loop, the statement is processed repeatedly
» Fastest interpreters are 5-10x slower than executable native code
» Could be 100x or more however for some programs

= All bytecode languages (representations) can be executed this way

= Implementation
» Decode and dispatch loop — AKA switch-dispatch interpretation



“ Interpretation (Python)

for(;;{
//check for thread-switching/signals .. etc.

//read next VM instruction from bytecode file, extract opcode
opcode = NEXTOP();

// opcode has an arg ?

if (HAS_ARG(opcode))

oparg = NEXTARG();

switch (opcode) {

case NOP: break;
case LOAD FAST: ... break;

}



‘ Bytecode ISA

e JVM
= Typed instructions
s Opcode: 1-byte wide (253 are used)
s Data: zero or more values to be operated on (operands)

e MSIL
= Typed instructions
s Opcode is 2-bytes (64K possible)
e Python
m 113 opcodes (42 with arguments and 71 without)

e All use operand stack for one or more of their operands
e Translator must translate this ISA to native code



Control and Data Flow Comparison

Interpreter .
Bye  rounes *Sortans many rgnches (ot
code code AKA handlers S .
Direct == target in instr
K. - Indirect == target in
~Dispatch :
3 register (need looku
- 100D gister ( P)
...... < ﬂ /
) _
[
Native execution Decode & Dispatch

l Control flow

Data flow (read source instructions)
v



Control and Data Flow Comparison

Bvt Bvt Interp_reter  Contains many branches (both
yte yte routines direct and indirect
code code AKA handlers  direct and in irect) CPU
Time |F DEC WB
~Dispatch 4 ;
~ loop 1
2 i i
...... > F / 2 7
vd 3 | iy i
1 4 X £
108 5 | O O I
6 |, O C
7 ib '-8 C
M i, is @ conditional branch
Hardware predicts its not taken, ie
Native execution Decode & Dispatch that the fallthrough instr i5 is next
CPU computes branch target in EX
l Control flow - and finds out that its TAKEN!
- i3 and i, are mistakes! a MISS
Data flow (read source instructions) Start correct instruction I,

v Flush i; and i, (bubble in pipeline)



(Un-)Conditional Branches

BBl1: (p=0
=1
v
BB2:|p=p +i
o o -
fall-through Tp 60 goto BB4 p) ump
edge / edge
BB3: | ...
goto BB4
BB4:

« Contains many branches (both
direct and indirect) CPU

Time |F DEC wB
7 I',
2 l'2 l',
XK i
5 () () l'2
6 | i, O C
7 ib is C

i, is a conditional branch

Hardware predicts its not taken, ie
that the fallthrough instr i5 is next

CPU computes branch target in EX
- and finds out that its TAKEN!
- i3 and i, are mistakes! a MISS

Start correct instruction i,
Flush i; and i, (bubble in pipeline)



Interpreter: Decode and Dispatch

I Interpreter

//interpreter loop
for(;;{
//checks

//read/parse next

//bytecode instr

opcode = NEXTOP();

switch (opcode) {

case NOP: break;

case IADD:
iadd_handler();
break;

Byte

routines
AKA handlers

code

"‘xpispatch
~ loop
ﬂl

/

Decode & Dispatch

l Control flow

Data flow (read source instructions)

v

 Contains many branches (both
direct and indirect)

« Typically difficult to predict:
» Switch-case (register
indirect)

« Call to interp routine

 Return from interp return
(indirect branch)

 Loop end test/branch



‘Interpreter: Decode and Dispatch
Interpreter

Byte routines
//interpreter loop code AKA handlers

for(;; {

//checks *Dispatch
*_loop

//read/parse next |  fee- > A |

//bytecode instr /

opcode = NEXTOP(); 4

switch (opcode) { i

case NOP: break; >

case |IADD: '
iadd_handler();
break;

Decode & Dispatch

l Control flow

Data flow (read source instructions)
v

 Contains many branches (both
direct and indirect)

« Typically difficult to predict:
» Switch-case (register
indirect)

« Call to interp routine

 Return from interp return
(indirect branch)

 Loop end test/branch

* Optimizations are needed to

speed up the process
« Reduce number of dispatches
» Reduce the overhead of a
single dispatch
* the interpreter loop
- fewer branches
« more predictable
branches



Indirect Threading (ITI)

————

Switch-Case:
inst = getFirstInst();
while((inst!=null)
{
opcode = getOpcode(inst);
switch (opcode){
case opA:
opA_handler(inst);
break;
case opB:
opB_handler(inst);
break;

¥
inst = getNextInst(inst);

)
finish();

Optimization 1:

- get rid of the outer loop (test/branch per
each instruction interpreted)

- get rid of the function calls (and their
returns) for each opcode
1-call, 1-return per instruction interpreted
Returns are typically indirect jumps
Get rid of the return
Replace the call

To enable this: Put all of the handler code at
specific/ known locations in memory, and put their
addresses in a lookup table (indexed by opcode)

- inline the handlers into one long interpreter
code body



‘Indirect Threading (ITI) |ITL:
inst = getFirstInst();

Switch-Case:
inst = getFirstInst();
while((inst!=null)
{
opcode = getOpcode(inst);
switch (opcode){
case opA:
opA_handler(inst);
break;
case opB:
opB_handler(inst);
break;

¥
inst = getNextInst(inst);

)
finish();

if (inst==null) finish();
opcode = getOpcode(inst),
handler = handlers[opcode];
goto *handler;

OPA_LABEL:
... [* implement opcode A */
inst = getNextInst(inst);
if (inst==null) finish();
opcode = getOpcode(inst);
handler = handlers[opcode];
goto *handler

OPB_LABEL:

Eliminates: switch-case (register indirect) & loop

Improves: prediction for handler target (if opcodes
occur in the same sequences — which they do)
Adds: Lookup table for handler address




Direct Threading (DTI)

Switch-Case:
inst = getFirstInst();
while((inst!=null)
{
opcode = getOpcode(inst);
switch (opcode){
case opA:
opA_handler(inst);
break;
case opB:
opB_handler(inst);
break;

¥
inst = getNextInst(inst);

)
finish();

Direct Threading (DTI):
inst = getFirstInst();

if (inst==null) finish();
handler = getOpcode(inst);
goto *handler;

OPA_LABEL:
... [* implement opcode A */
inst = getNextInst(inst);
if (inst==null) finish();
handler= getOpcode(inst);
goto *handler;

OPB_LABEL:

iadd -> 0x60 -> 0x8852771A

Eliminates: lookup table for handler address
Gets: same benefits as ITI
Adds: Translation of each instruction executed
(once): opcode_operands -> handlerAddr_operands
-- necessarily increases the instruction size
from 1 byte to 4 bytes




‘ Direct Threading (DTI) Direct Threading (DTI):
inst = getFirstInst();

Switch-Case:
inst = getFirstInst();
while((inst!=null)
{
opcode = getOpcode(inst);
switch (opcode){
case opA:
opA_handler(inst);
break;
case opB:
opB_handler(inst);
break;

¥
inst = getNextInst(inst);

)
finish();

if (inst==null) finish();
handler = getOpcode(inst);
goto *handler;

OPA_LABEL:
... [* implement opcode A */
inst = getNextInst(inst);
if (inst==null) finish();
handler= getOpcode(inst);
goto *handler;

OPB_LABEL:

(once): opcode_operands -> handlerAddr_operands

-- necessarily increases the instruction size
from 1 byte to 4 bytes



‘Control and Data Flow Comparison
Interpreter

Byte
Byte Byte Interpreter nge routines
code code routines [ b
’x‘pispatch y l
~ loop
...... > ﬂ / l:‘.::”.... 1
1
U |
P
Native execution Decode & Dispatch Direct Threaded Interpretation

l Control flow Data flow (read source instructions)
v



% Time Spent

Interesting Interpreter Measurements

70 -
60 |
50

90 -
80 -

100 4
|
=

Python

BOTHER

0s

o

ELIB

OVM.RUNTIME

BEVM.LOOP

oOos B OTHER

ELIB

OVM.RUNTIME

EVM.LOOP




‘Interesting Interpreter Measurements: Dispatch Rate

1.6 ]

1.4 4

—
@ N
I

1.2 A

0.8 -
0.6
0.4
0.2

#of Dispatches per 100 cycles

\ OCpython E Hotspot \

« More cycles per dispatch for Python bytecodes
 Type-generic instructions (lots of work needed from interpreter)
« EX: BINARY_ADD — add’s two objects, different semantics
depending on object types
* Built-in semantics: EX: print for lists, tuples, strings
« Java breaks this up into individual bytecodes/calls libs



‘Interpretation — Interesting points made in the paper

e Flat sequence layout of operations vs graph layout
s Flat sequence is easier to manipulate — fast
= VM instructions

e “Level” of operations

= Amount of interpreter work per amount of useful work

» Impacts the difference in performance between the interpreter and the
equivalent native code execution

= This work targets LOW LEVEL bytecodes
» Those with high dispatch-to-work ratios (dispatch rate)
» Note that the Python numbers presented earlier
# Python has low dispatch rates, so interpreter overhead is in the noise

¢ That is, these optimizations (that target the interpreter ovehead) aren't
likely to have much impact



‘Interpretation — Interesting points made in the paper

e “Level” of operations

= Amount of interpreter work per amount of useful work

» Impacts the difference in performance between the interpreter and the
equivalent native code execution

¢ Large number of simple operations
- Interpreters are slowest relative to native code execution

= JVM vs GForth
» Dispatch-to-real-work ratio of GForth is higher (simpler VM instructions)
¢ JVM — fewer dispatches for same amount of work
» JVM: more time outside of interpreter loop (GC, verification)
» GForth caches topmost operand stack element in a register
» 16.5% of retired machine instructions are ind. branches (6.1% for JVM)
¢ Opts that reduce branch misses will benefit GForth more than JVM



‘Interpretation — Interesting points made in the paper
(Continued)

e The biggest problem with interpretation on performance
= Branch mispredictions
= The deeper the pipeline the worse the cost
= Again for bytecodes with high dispatch rates

= And the overhead of the dispatch loop
» Two sources of overhead: Number of dispatches, cost per dispatch

e Solutions: replication, superinstructions



‘Interpreter Optimization: Dynamic Replication

e Each instruction has its own dispatch body

= Dynamic — make a copy for each instruction, flush icache dynamically
» Concatenation of dispatch bodies
» Requires that code be relocatable
» Note that this is one dispatch body for each unique instruction in a program

¢ Repeated execution of the same instruction will use the same dispatch
routine

Dynamic Replication

data segment data segment
VM Code VM routine copies

iload " Machine code for iload
iadd Dispatch next

lload Machine code for iadd
iload Dispatch next
Machine code for iload
Dispatch next

Machine code for iload
Dispatch next




‘Interpreter Optimization: Static Replication

e Each instruction has its own dispatch body

s Static — make multiple copies for each operation, reroute execution of
instructions to different copies --- use a greedy algorithm for rerouting

» Note that this has no notion of a program — this is done at interpreter
build time

¢ S0 we have to guess how many copies of each dispatch routine to make

¢ Figuring this out: Run a bunch of programs, profile them, collect data
on the most important instructions and the number of different
instances they are likely to have

Static Replication

data segment code segment
VM Code VM instruction routines

iload Machine code for iadd
iadd Dispatch next
lload Machine code for iload
iload Dispatch next

Machine code for iload
Dispatch next




‘Interpreter Optimization: Static Replication

e Each instruction has its own dispatch body

s Static — make multiple copies for each operation, reroute execution of
instructions to different copies --- use a greedy algorithm for rerouting

» compiler can optimize across component instructions (keep stack items in
registers, combine stack/pointer updates of components, instr. Scheduling

» Same replic/superinstr set across all programs/inputs (dynamic is customized
for current program/input)

» Note that this has no notion of a program — this is done at interpreter
build time



‘Interpreter Optimization: Replication

e Each instruction has its own dispatch body

= Dynamic — make a copy for each instruction, flush icache dynamically
» Performed as the program is run

s Static — make multiple copies for each operation, reroute execution of
instructions to different copies --- use a greedy algorithm for rerouting

» Performed at interpreter build time

e Much more executable code
e Same number of dispatches (# of VM instructions aka operations)

e Same number of indirect branches

= But more predictable
» 1 target each so will hit on repeated execution
» Assuming no conflict/capacity misses



‘Interpreter Optimization: Superinstructions

e Identify basic blocks
= Straight-line code
= That ends with some control flow

» Typically branch, jump, or call

» Exceptions are control flow but they occur in high-level languages for many
many instructions so, these instructions typically do not end basic blocks

¢ If they did, there wouldn't be any instructions to work with/combine



‘ControI-FIow Graph (CFQG)

e Organizing of the intermediate code in a way that enables efficient

analysis and modification

e A simplified representation of a program
= Function-level
= But then functions can be linked

e The graph consists of nodes basic block
= Basic blocks X=a%*5
» Pieces of straight-line code y = z[x]
a=a+1

» One entry into it at the top
» One exit out of it at the bottom
» No instructions that change control flow inside
= And edges
» Control flow edges that show how control can change

/[

afi
1/
~

38



Basic Blocks and Control Flow

e

x = 20;

while (x < 10) {
X=X-1;
Al[x]=10;

b

y=X+3;

if(x=4)x=x-2;

20

X:

1) x=20

2) if x>=10 goto 8
IHx=x-1
4)A[x] =10

5) if x<>4 goto 7
6)x=x-2

7) goto 2
yy=x+5

\ 4

if x>=10 goto B4

X =x-1
A[x]=10
If x<>4 goto BB6

\ 4

X=>_<—2

!

goto BB2

—0

‘/\y —

39



“ Finding Basic Blocks

e Find set of leaders Here: tuples are instructions

= 1) The first tuple of a method is a leader
m 2) Tuple L is a leader if there is a tuple:

goto L if x relop y goto L
= 3) Tuple M is a leader if it irnmediately follows a tuple:

goto L if X relop y goto L

e A basic block consists of a leader and all of the following tuples
except the next leader

40



‘ Finding Basic Blocks

e Find set of leaders
= 1) The first tuple of a method is a leader
m 2) Tuple L is a leader if there is a tuple that jumps to L

s 3) Tuple L is a leader if it immediately follows a tuple that branches
(unconditionally or conditionally)

Source code Intermediate code (IR/IF)

p= 0; Dp=0

i=1; 2)i=1

do { | Np=p+i

D+=1i; 4) if p <= 60 goto 7

if (p>60){ 55p=0
p=0;i=5; 6)i=5

} 7)tl=i*2

i =2 + 1; 8)i=tl+1

} 9) if i <= 20 goto 3

k = p*3; 100k =p * 3 41




‘ Finding Basic Blocks

e Find set of leaders
= 1) The first tuple of a method is a leader
m 2) Tuple L is a leader if there is a tuple that jumps to L

s 3) Tuple L is a leader if it immediately follows a tuple that branches
(unconditionally or conditionally)

Source code

p=0;

I =1;

do {

p+=1

if (p>60){
p=0;i=5;

¥

I

| = %2 + 1;

}
k = p*3;

Intermediate code (IR/IF)

1)p=0 «
2)i=1
3)p=p+|<~

4) if p<=60 goto 7
5p=0

6H=5‘&T:;7
Ntl=i*2

8i=t1+1
9) if i<=20 goto 3

j0k=p*3 <

Leader (rule 1)

— _Leader (rule 2)

eader (rule 3)

42



“ Basic Blocks and Control Flow Example

BBl: [p=0

\ i=1
¥

BB2:|p=p +i

if p <= 60 goto BB4

jump
edge

BB3: |p =
| = fall-through
edge

BB4:|tl =i*2
=11 +1
if i <= 20 goto BB2

/)\

BB5: |k = p*3

43



‘Interpreter Optimization: Superinstructions

e Identify basic blocks
= Straight-line code

= That ends with some control flow
» Typically branch, jump, or call

» Exceptions are control flow but they occur in high-level languages for many
many instructions so, these instructions typically do not end basic blocks

¢ If they did, there wouldn't be any instructions to work with/combine

e For each basic block
= Make a dispatch body (superinstruction)

= Remove dispatch code in between VM instructions within block
» Increment VM program counter (PC)
» Extract address from VM instruction, jump to address

e For identical basic blocks

= Use same superinstruction (cost = less predictable branch into/out of)
= Use replication in combination



‘Performance Results / Findings

e More benefit for GForth than for JVM
= JVM has fewer dispatches to begin with for same amount of work
» Bytecode instructions are “lower-level” — for GForth than for JVM
» Instructions have types associated with them — for both
e Results

= Many icache misses avoided, improves performance (up to 4.5X for
GForth, 2.7X for JVM)

» Compared to dynamic compilation: 3-5X for GForth; 9.5X for JVM

= Dynamic is better
» Static does ok for GForth but not JVM

s Combination of replication & superinstructions is better

e Different architectures (w/ different BTBs studied)
= Using hardware performance counters/monitors
= Also simulation of different BTBs studied (another paper)



