
CS263	
Program	Profiling

Profiling
•  “the formal summary or analysis of data representing distinctive

features or characteristics” (American Heritage Dictionary)
–  Program profiling: analyzing the execution characteristics of code

to extract and summarize its behavior

•  Offline vs online
–  Offline – Collection time doesn’t matter
–  Online – Slow-down is an important factor

•  Exhaustive vs sample-based
–  Sampling is estimation. The difference between a sampled profile

and an exhaustive profile is the accuracy/error measure
–  Sampling is commonly used online where time matters

•  Can be used offline if inaccuracy can be tolerated

Why Profile?
•  To characterize program behavior

–  Understand how programs behave
–  Guide tool, runtime, system (hw/sw) design
–  Program test generation

•  To capture specific or unusual behavior
–  Security attacks, intrusion detection, bugs, test coverage
–  Logging

Why Profile?
•  To improve performance, track performance regressions

–  Time different parts of the program to find out where time is
being spent
•  80/20 rule – identify the 20 and focus your optimization energy
•  By hand optimization
•  Automatic (compiler or runtime) feedback-directed optimization

–  Target hot code
–  Inlining and unrolling
–  Code scheduling and register allocation

–  Increasingly important for speculative optimization
•  Hardware trends à simplicity & multiple contexts
•  Less speculation in hardware, more in software

What to Profile
•  Individual instructions

–  Memory accesses (allocations/deletions, loads/stores)
•  Lends insight into caching, paging, garbage collection, bugs & more

–  If individual instruction detail isn’t needed: capture basic blocks
•  Estimate bb’s by recording branches and their direction
•  Lends insight into branch miss overhead

•  Paths
•  Function invocations and callsites
•  Memory allocation, GC time
•  Interfaces (ABI, APIs to other components, foreign function)
•  Resource use

–  CPU, Network, disk, other I/O
–  Runtime services (compiler/interp, GC, runtime, OS)

•  User interactivity

Instrumentation vs Event Monitoring
•  Instrumentation: Insert code into the code of a program

–  The additional code executes interleaved with program code
–  To collect information about the program code activity

•  Can perturb the behavior that it is trying to measure

Instrumentation vs Event Monitoring
•  Instrumentation: Insert code into the code of a program

–  The additional code executes interleaved with program code
–  To collect information about the program code activity

•  Event monitoring
–  Profiling external to the executing program
–  Output timestamps, upon OS or runtime activity, around program
–  Record of operations (timings, counts) in runtime that execute

concurrently with the executing program, yet independent of it
•  Garbage collection activity
•  Accesses to the OS
•  Accesses to libraries (e.g. GUI)

–  Hardware performance counters/monitors (HPMs)

•  Can perturb the behavior that it is trying to measure

Adaptive Optimization

•  Sample the system (lightweight)
•  Predict future behavior based on past behavior

–  Does the past predict the future?

•  Determine if prediction can amortize the cost of applying more
optimization overhead

•  Sampling to find hotspots or problem methods
–  Periodically record the top N methods on the runtime stack

•  Finding the right period and a value for N is tricky!

–  Use HPMs to identify methods that are causing stalls in the
hardware… Careful, calling HPM services increments counters
•  Branch mispredictions
•  Cache misses

–  Very low overhead (< 2%)

Exhaustive Path Profiling (Instrumentation)

•  Processors need long instruction sequences
•  Programs have branches

A	

C	

E	

B	

D	

Thanks	to	Mike	Bond	(Ohio	State)	for	his	presenta:ons	of	PEP	and	Con:nuous	Path/Edge	
Profiling	for	these	slides	[CGO/MICRO	2005]	on	path	profiling	and	its	op:miza:on.	

Why path profiling?

•  Compiler identifies hot paths across multiple basic
blocks

A	

C	

E	

B	

D	

Why path profiling?

A	

C	

E	

B	

A	

C	

E	

B	

D	

•  Compiler identifies hot paths across multiple basic
blocks

–  Forms and optimizes “traces”

Why path profiling?

A	

C	

E	

B	

A	

C	

E	

B	

D	

Oops!	

Oops!	

•  Compiler identifies hot paths across multiple basic
blocks

–  Forms and optimizes “traces”

Ball-Larus path profiling

•  4 paths à [0, 3]

Ball-Larus path profiling

2	

1	

•  4 paths à [0, 3]
•  Each path sums to unique

integer

0	

0	

Ball-Larus path profiling

2	

•  4 paths à [0, 3]
•  Each path sums to unique

integer

 Path 0

1	 0	

0	

Ball-Larus path profiling

2	

•  4 paths à [0, 3]
•  Each path sums to unique

integer

 Path 0
 Path 1

1	 0	

0	

Ball-Larus path profiling

2	

•  4 paths à [0, 3]
•  Each path sums to unique

integer

 Path 0
 Path 1
 Path 2

1	 0	

0	

Ball-Larus path profiling

2	

•  4 paths à [0, 3]
•  Each path sums to unique

integer

 Path 0
 Path 1
 Path 2
 Path 3

1	 0	

0	

Ball-Larus path profiling

r=r+2

r=0

r=r+1

count[r]++

•  r: path register
–  Computes path number

•  count:
–  Stores path frequencies

Ball-Larus path profiling

r=r+2

r=0

count[r]++

•  r: path register
–  Computes path number

•  count:
–  Stores path frequencies
–  Array by default
–  Too many paths?

•  Hash table
•  High overhead

r=r+1

r=r+2

r=0

count[r]++

r=r+1

Optimizing Path Profiling

Computes	path	

Updates	path	profile	

r=r+2

r=0

count[r]++

r=r+1

Optimizing Path Profiling

cheap	
<10%	

expensive	
>90%	

•  Where have all
the cycles
gone?

r=r+2

r=0

r=r+1

Optimizing Path Profiling

All-the-Dme	
instrumentaDon	

Sampling																																										
(piggybacks	on			exisDng	

mechanism)	 SAMPLE r

r=r+2

r=0

r=r+1

Optimizing Path Profiling

All-the-Dme	
instrumentaDon	

Sampling																																										
(piggybacks	on			exisDng	

mechanism)	

Overhead: 30% à 2%
[Bond et al. 2005]

SAMPLE r

freq	=	30	

freq	=	90	 freq	=	10	

freq	=	70	

Profile-guided profiling

•  Existing edge profile informs path
profiling
–  Profile some initially

•  Quite fast to profile edges
•  Can be sample based
•  Just need to determine which branch

edges are taken more frequently

r=r+2

r=0

SAMPLE r

r=r+1

Profile-guided profiling

•  Existing edge profile informs path
profiling

•  Assign zero to hotter edges
–  No instrumentation

Sample-based Instrumentation
•  Turn on and off instrumentation dynamically

–  Challenge: when to turn instrumentation on and off

–  Why is this important to do?

–  How:
•  Via code patching: Ephemeral Instrumentation, DynInst, IBM Java

Developer Kit
–  Have two versions of the methods (or code blocks) you want to

instrument
–  In the uninstrumented version, put a patch point at entry

»  Dummy instruction large enough to hold a jump
– Overwrite (patch) the entry point to instrument
–  “Undo” patch to turn off instrumentation

•  Via recompilation and on-stack replacement

–  Via code copying (today’s paper)

Today’s paper
•  Summarize it
•  Ways to turn instrumentation off (what’s wrong with these?):

–  Patching
–  Continuously recompiling
–  OSR

Today’s Quiz
1.  2 advantages to this approach
2.  What is checking code and what is its overhead
3.  What is duplicated code and what is its overhead
4.  Profile types used in experimentation
5.  Disadvantages to the approach (2)

–  Solutions to one of the disadvantages

Today’s Quiz
1.  Advantages to this approach
–  Low overhead, high accuracy sampling
–  Simple
–  Controllable

2.  What is checking code and what is its overhead
–  Checks on back edges and method entry (on all of the time)

•  To determine when to switch to instrumented code

3.  What is duplicated code and what is its overhead
–  Instrumentation
–  Space for instrumented code copy

4.  Profile types: call edge and field accesses
5.  Disadvantages: space/time overhead

–  Checking, duplicated code, compile time
–  Code bloat solutions: Partial duplication and no duplication

31	

Hardware Performance Monitors/Counters

•  Libraries provide access
to hardware collected
HPMs

•  Other types of

sampling
–  Random
–  Periodic
–  Phase

33	

Time Varying Behavior of Programs

–  Different behavior

during different parts of
execution

–  Many programs execute
as a series of phases
possibly with recurring
patterns

–  Capture via basic block
profiles for fixed number
of instructions=vector
•  Compare counts across

vectors for similarity

Program Behavior changes over time

34	

Phase Aware Remote Profiling
•  Extant approaches (random/

periodic sampling)
–  Do not consider time-varying

and repeating behavior
–  Collect redundant information

I-656--

I-1312--

I-984--

I-328--

Periodic
samples

35	

Phase Aware Remote Profiling
•  Extant approaches (random/

periodic sampling)
–  Do not consider time-varying

and repeating behavior
–  Collect redundant information

•  Our approach: Sample
according to phase behavior

I-656--

I-1312--

I-984--

I-328--

Phase
samples

Periodic
samples

36	

Results
•  50-75% reduction in overhead (over periodic and random

sampling)

0	 5	 10	 15	 20	 25	

% Program	Sampled	

0	

10	

20	

30	

40	

%
	E
rr
or
	in
	B
lo
ck
	C
ou

nt
s	

avg random	
max random	
periodic	
phaseaware	

37	

Sampling Interactive Sessions

•  A period of user interaction: Each application has a specific
pattern

Interac:vity	Session	-	Tetrix	

38	

Interactive Sessions

•  A period of user interaction: Each application has a specific
pattern

Interac:vity	Session	-	Solitaire	

Profiling Tools
•  Of binaries (independent of language)

–  Pin, Dynamo
–  Valgrind
–  gprof (call graph and function timings)

•  Of programs (language specific)
–  Java – JVMPI/TI, JProfiler, many others, GCSpy
–  Ruby – ruby-prof
–  Python – cprofile

•  HPMs
–  Library support: PAPI
–  OS Integration: PerfMon, OProfile, XenOProf

