anchore

The Rapid Rise of Containers 1n
Production

DANIEL NURMI | 2017

Contents

section 1 Container History

section 2 Deployments and Benefits

section 3 Tensions and Solutions

Brief History of Containers

1979 ® 2000-2005 ® 2006-2012
Ability to execute UNIX processes with a FreeBSD/Solaris/Linux
view of alternate root filesystem Adding process/IPC/networking isolation Adding resource access controls and
in addition to root FS more isolation options
Security focused use-cases popular Systems built to manage groups of

environments across physical
systems

Brief History of Containers

2013-2014 ® 2014-2017
De-facto standardization around Large scale container cluster
container creation/execution/format orchestration and management
Centralized hubs of shared container Rapid adoption in data-center/large scale
‘images’ system deployments

What is a Container Today?

e Minimal root filesystem (plus your application)
* Small set of metadata describing environment

* Executed by an ‘engine’ that is capable of interacting with OS namespace and resource

isolation subsystems to create isolated runtime environment (ex: Docker)
* Sometimes described “like a very light-weight VM”

* NOTE: different clustering systems define units composed of multiple containers that
together form a service application

Anatomy of a Linux Container

Build
Metadata
(Dockerfile)

Container
Image

Anatomy of a Linux Container

Network
Environment

Build
Metadata

Execution
Commands

(Dockerfile)

ITI

Source Image

Container

Image

Anatomy of a Linux Container

Network
Environment

Execution
Commands

Build

Metadata

(Dockerfile)

Distro Packages

Container

Image Non-Packaged
Files

Anatomy of a Linux Container

Environment Official

Packages

Build

E fl
Metadata a2 ot

Commands

Third Party
Packages

(Dockerfile)

Language
Packages

Distro Packages
Config Files
Container

Image Non-Packaged
Files

App Software
Bundles

Custom Configs

Secrets

10

|
jH00ed

“like a light-weight VM”

...but not exactly.

* Not OS agnostic — shares kernel with host

* Not full system virtualization (just OS) — no hardware resource abstractions
* Very portable (between like hosts WRT OS version)

* Very fast iterations to build/deploy

* Built by applying changes to previous container images

11

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sched.h>
#include <sys/mount.h>

char cstack[1024*10007];

static int child_init() {
printf ("HELLO FROM A \"CONTAINER\" %d\n", getpid());
printf("---\n");
chroot ("/tmp/rootfs");
system("mount -t proc proc /proc");
system("ps -aux");

printf("---\n");
system("ip link");
printf("---\n");
return(0);

}

int main(int argc, char **argv) {
pid_t cpid;

cpid = clone(child init, cstack + (1024%*1000), CLONE NEWPID |
CLONE_NEWNET | CLONE NEWNS | SIGCHLD, NULL);
waitpid(cpid, NULL, 0);

exit(0);
}

12

[root@tele ~]# tar zxf rootfs.tgz
[root@tele ~]# gcc container.c && ./a.out
HELLO FROM A "CONTAINER" 1

USER PID %CPU $SMEM VSZ RSS TTY STAT START
TIME COMMAND
root 1 0.0 0.0 5164 88 ? S+ 17:37
0:00 ./a.out
root 3 0.0 0.0 49020 1820 ? R+ 17:37

0:00 ps -aux
1: lo: <LOOPBACK> mtu 65536 gdisc noop state DOWN mode DEFAULT
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

[root@tele ~]#

The Container as a “unit”

» Extremely flexible abstraction — many are trying to determine which ‘unit’ containers are

best suited

e “Application”: purely as a way to bundle an application along with a set of imbedded
dependencies

e “Service”: ready-to-run service components that can be composed/deployed in support of
applications

* “Package”: bundled software ready to be build upon/extended
* “Process”: everything is a container, including single binaries per container

13

Adoption

Developers

* Can develop application/application set in isolation on
a single laptop

» Isolation allows flexible library/configuration choices
to be made

« Easy to share/leverage other developers’ containers

Fast and Easy

* Engines run on plain Linux/Windows machines,
whether bare-metal of virtualized

* Ifyou can deploy Linux/Windows somewhere, you
can deploy containers right away.

14

Healthy Ecosystem of Cluster Orchestration
systems

Open-source (and free) orchestration systems, well
engineered

Proof is in the pudding — some very large-scale
systems using tech that is freely available

VMs and Clouds have paved the way, now we’re
seeing broader adoption of the idea of a ‘Datacenter
oS’

Healthy Ecosystem of Supporting Systems
Monitoring, storage, CI/CD, security...

Industry Participants

. shippable KIS MBaA TIC O sacworce
Adoption Leads to Engagement © Joyent » e S
) Z :Gam'i? # threat stack
S LINIVA < [% Q Jelastic . o =
. . . . L] == ‘
* Adoption has exceeded the industry’s ability to § e § é mr&;@: . % @nocx{sm
. . . = — n -
move to container-based systems immediately RANGHR 2 signal fix 2 @uastsaces § 8 yubico
o~ @]
2 * Osysdig | & 2 Tuistlock
. . Shipright, LLC. _@ stacksmith eera
» Every corner of the Data-center is being packet 2 £om
APPFORMIX @ :@)5C6|0Ck

inspected for production container suitability

* Many assert that next generation data-centers
will be accessed via primarily container-based

CONTAINER TECHNOLOGY
infrastructure * © core05 (52 MESOSPHERE

dOCer kubernetes

15

Typical Container Workflow

PHASE 1 ® PHASE2 ® PHASE3

Creates an application container either Orchestration system rolls
from scratch or ‘FROM’ an existing out/deploys new container

Ses Enters a build/test pipeline
container image

e : Testing (functional, unit) System-dependent, lots of variety
Rapidly iterates on local system, pulling

in libraries/configurations/etc. as needed Security Analysis(?) Ultimately executed by a container

engine very similar to what was
Can grab existing containers that run pre- running on the dev’s local system
configured services (DBs, etc.) easily

17

Deployment Options

DIY

Native support in Linux and Windows kernels for
clone()ing a process into various isolated namespaces

Major distros all support some form of container tools

Mesos/Kubernetes

* Maesos: cluster scheduling/resource management,
containers and more

* Kubernetes: container focused, application design
assertions/constraints

Docker

18

Dockerhub container repository with lots of content

Build images, share images, deploy into one-medium
number of servers quickly

Clouds
AWS ECS: containers in AWS instances

* Google Container Engine: using Kubernetes

* Microsoft Azure: Mesos, Kubernetes and Docker
cluster hosting

Benefits

Speed
* Very light-weight equals fast development iterations

* Also fast to move unit through a dev->prod pipeline

Isolation

* Multiple environments running side-by-side on small
number of phys. servers

Portability

* High degree of assurance that ‘if it works on my
machine, it will work in production’

19

Encapsulation

* Proven to be useful mechanism to bundle useful
services and make available for others to use easily

Tensions

Speed

* So easy and fast — single developer can generate many
containers in a short amount of time

Isolation

Isolated can mean opaque — limited insight into the
containers themselves

* Realize speed through a pipeline requires solid * Secure?
automation and testing
Portability :
Encapsulation

* Many competing systems available that can all execute
same set of containers — how and when to make a big
decision on technology

20

Easy to bring in containers developed elsewhere
Control over software shifted from OPS/SEC to DEV

How are tensions being handled?

21

Some have replaced VM/Clouds with containers: at the expense of container benefits
Some have relied on best practices: we trust you developers, don’t do the wrong thing
Some have built custom tools and infrastructure: it’s mostly there, but some parts are
missing

Some are deploying at small scale and dev/test: waiting for maturity before moving to
production

Anchore! Analyze, inspect and control containers based on user-defined
certification/validation policies.

Anchore Approach: get the data, expose
the data, use the data

Tension: trusted, certified base containers Tension: speed
* Engine downloads, analyzes, makes available to user * Assist in building automated pipelines by adding
set of curated container base images control points for policy application

* Anchore CI/CD integration with tools like Jenkins

Tension: opaque containers

; : - S - Tension: sprawl
* Tools for inspecting, reporting, navigating container cnsion. spraw

images * Detailed analysis allows for interesting queries

« All the way down to file contents * Next Heartbleed just came out — see vulnerability
surface immediately (no scan) and get instruction on
how to remediate quickly

22

https://anchore.io

M B a8 B © DD F@Eia'a (& G a & i & Gil@ (Fe (] VX nurmi@anchore

@ Secure https://anchore.io T

Welcome Daniel! We're curr an: Jositories icial and 511 public

Display

£ Repository W Tag Count) Repo Last Pushed) Rating
ﬁ + library/ubuntu 195 16 days ago 5969 Official
+ library/nginx 102 15 days ago 5966 Official
+ library/mysq 64 5 days ago 4299 Official
+ library/node 805 7 days ago 3912 Official
+ library/redis 84 15 days ago 3723 Official
+ library/postgres 104 14 days ago 3521

+ library/centos 25 A month ago 331 Official

[)
[]
https://anchore.io
M B BB © 0D 0@ aad (e 61ad e ci(Q Fe« B8 ex | nmeancore
< C' | @ Secure https://anchore.io/image/dockerhub/46102226f2fd547f5bbabfcd3dac62cd0d3b7cc33a37a40dae38e088fb... T ¢ n

Policy Summary

D T

The final gate action was and the policy applied to this image was Anchore Default (see below).

Badge image policy fail

b Copy Badge HTML by Copy Badge Markdown

Gate Operations

Display | 10 3 | gates Filter the gates list:
Gate Trigger Check Output Gate
1k Action
ANCHORESEC VULNLOW Low Vulnerability found in package - coreutils (CVE-2016-2781 - https://security-tracker.debian.org/tracker/CVE-2016- m
2781)
ANCHORESEC VULNLOW Low Vulnerability found in package - nginx (CVE-2013-0337 - https://security-tracker.debian.org/tracker/CVE-2013-0337) m

Medium Vulnerability found in package - libtiff5 (CVE-2016-10095 - https://security-tracker.debian.org/tracker/CVE-2016-

ANCHORESEC VULNMEDIUM 10095)

Anchore Tech

Anchore.10

Scanning dockerhub (more soon!) public and private
container images - Security, policy, contents

~20TB of analyzed data, 30k images and counting
https://anchore.io

Jenkins CI/CD Plugin

Include anchore analysis/policy application (and gate)
into your container CI/CD process

Official jenkins plugin from Jenkins Ul

Anchore Scanner

25

Open-source scanner itself

Linux CLI for analyzing any container image and
applying policy/security scan

https://github.com/anchore/anchore

On-prem services

Kubernetes webhook admission control

On-prem stateful scanning, policy application,
notification service

Challenges and Discussion

26

Bare metal -> VM -> OS containers -> regular processes -> PaaS frameworks: is there
“one system’ or will the spectrum continue to broaden?

Who has the control over what software is eventually actually deployed (dev, ops,
dev/ops, security?

Storage (well...state in general)!?

Will containers eventually become just as heavy as VMs, as more standardization,
security, and OS agnostic functionality are added to the mix?

How will containers impact the increasing ubiquity of mobile environments/OSes?
Micro-services architectures — lots of discussion about how containers are ushering in
microservices — 1s the container abstraction right for microservices or just convenient?

Will containers become the ‘process’, and if so what does the OS look like (and what do
OS distributions look like?)

anchore

Thank you!

nurmi@anchore.com

HTTP://WWW.ANCHORE.COM

Typical Container Deployment

28

DEVELOPER

PUBLIC CONTAINER
REGISTRIES
(EX. DOCKERHUB)

~
J

APPLICATION
CONTAINER

CONTAINER ENGINE
HOSTS

:< CONTAINER REGISTRY)

CONTAINER IMAGE
CATALOGUE

n
>

-
N

ORCHESTRATION
SCHEDULER

CONTAINER ENGINE
HOSTS

