
The Rapid Rise of Containers in
Production
DANIEL NURMI | 2017

Contents

2

section 1 Container History

section 2 Deployments and Benefits

section 3 Tensions and Solutions

1.
Container History
(well…OS virtualization)

4

1979

Chroot!
• Ability to execute UNIX processes with a

view of alternate root filesystem

2000-2005

Jails/Zones
• FreeBSD/Solaris/Linux

• Adding process/IPC/networking isolation
in addition to root FS

• Security focused use-cases popular

2006-2012

Control Groups, LXC,
Namespaces and Clustering
• Adding resource access controls and

more isolation options

• Systems built to manage groups of
environments across physical
systems

Brief History of Containers

5

2013-2014

Docker, Rocket
• De-facto standardization around

container creation/execution/format

• Centralized hubs of shared container
‘images’

2014-2017

Kubernetes/Mesos/Swarm
• Large scale container cluster

orchestration and management

• Rapid adoption in data-center/large scale
system deployments

Brief History of Containers

What is a Container Today?

• Minimal root filesystem (plus your application)

• Small set of metadata describing environment

• Executed by an ‘engine’ that is capable of interacting with OS namespace and resource
isolation subsystems to create isolated runtime environment (ex: Docker)

• Sometimes described “like a very light-weight VM”

• NOTE: different clustering systems define units composed of multiple containers that
together form a service application

6

Anatomy of a Linux Container

7

Container
Image

Build
Metadata

(Dockerfile)

Anatomy of a Linux Container

8

Container
Image

Build
Metadata

(Dockerfile)

Files

Network
Environment

Execution
Commands

Source Image

Anatomy of a Linux Container

9

Container
Image

Build
Metadata

(Dockerfile)

Files

Distro Packages

Config Files

Non-Packaged
Files

Data

Network
Environment

Execution
Commands

Source Image

Anatomy of a Linux Container

10

Container
Image

Build
Metadata

(Dockerfile)

Files

Distro Packages

Config Files

Non-Packaged
Files

Data

Official
Packages

Third Party
Packages

Language
Packages

Custom Configs

Secrets

Network
Environment

Execution
Commands

Source Image

App Software
Bundles

“like a light-weight VM”

• …but not exactly.

• Not OS agnostic – shares kernel with host

• Not full system virtualization (just OS) – no hardware resource abstractions

• Very portable (between like hosts WRT OS version)

• Very fast iterations to build/deploy

• Built by applying changes to previous container images

11

12

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sched.h>
#include <sys/mount.h>

char cstack[1024*1000];

static int child_init() {
printf("HELLO FROM A \"CONTAINER\" %d\n", getpid());
printf("---\n");
chroot("/tmp/rootfs");
system("mount -t proc proc /proc");
system("ps -aux");
printf("---\n");
system("ip link");
printf("---\n");
return(0);

}

int main(int argc, char **argv) {
pid_t cpid;

cpid = clone(child_init, cstack + (1024*1000), CLONE_NEWPID |
CLONE_NEWNET | CLONE_NEWNS | SIGCHLD, NULL);
waitpid(cpid, NULL, 0);

exit(0);
}

[root@tele ~]# tar zxf rootfs.tgz
[root@tele ~]# gcc container.c && ./a.out
HELLO FROM A "CONTAINER" 1

USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND
root 1 0.0 0.0 5164 88 ? S+ 17:37
0:00 ./a.out
root 3 0.0 0.0 49020 1820 ? R+ 17:37
0:00 ps -aux

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

[root@tele ~]#

The Container as a “unit”

13

• Extremely flexible abstraction – many are trying to determine which ‘unit’ containers are
best suited

• “Application”: purely as a way to bundle an application along with a set of imbedded
dependencies

• “Service”: ready-to-run service components that can be composed/deployed in support of
applications

• “Package”: bundled software ready to be build upon/extended
• “Process”: everything is a container, including single binaries per container

Adoption
Developers
• Can develop application/application set in isolation on

a single laptop
• Isolation allows flexible library/configuration choices

to be made
• Easy to share/leverage other developers’ containers

Fast and Easy
• Engines run on plain Linux/Windows machines,

whether bare-metal of virtualized
• If you can deploy Linux/Windows somewhere, you

can deploy containers right away.

Healthy Ecosystem of Cluster Orchestration
systems
• Open-source (and free) orchestration systems, well

engineered
• Proof is in the pudding – some very large-scale

systems using tech that is freely available
• VMs and Clouds have paved the way, now we’re

seeing broader adoption of the idea of a ‘Datacenter
OS’

Healthy Ecosystem of Supporting Systems
• Monitoring, storage, CI/CD, security…

14

Industry Participants

15

M
O

N
IT

O
R

IN
G

CONTAINER TECHNOLOGY

SE
C

U
R

IT
Y

O
R

C
H

E
ST

R
A

T
IO

N

Shipright, LLC.

IN
FR

A
ST

R
U

C
T

U
R

E

Adoption Leads to Engagement

• Adoption has exceeded the industry’s ability to
move to container-based systems immediately

• Every corner of the Data-center is being
inspected for production container suitability

• Many assert that next generation data-centers
will be accessed via primarily container-based
infrastructure

2.
Deployments and
Benefits

17

PHASE 1

Developer Develops
• Creates an application container either

from scratch or ‘FROM’ an existing
container image

• Rapidly iterates on local system, pulling
in libraries/configurations/etc. as needed

• Can grab existing containers that run pre-
configured services (DBs, etc.) easily

PHASE 2

App Container is Committed
and Tested
• Enters a build/test pipeline

• Testing (functional, unit)

• Security Analysis(?)

PHASE 3

Deployed to Production
• Orchestration system rolls

out/deploys new container

• System-dependent, lots of variety

• Ultimately executed by a container
engine very similar to what was
running on the dev’s local system

Typical Container Workflow

Deployment Options

DIY
• Native support in Linux and Windows kernels for

clone()ing a process into various isolated namespaces
• Major distros all support some form of container tools

Docker
• Dockerhub container repository with lots of content
• Build images, share images, deploy into one-medium

number of servers quickly

Mesos/Kubernetes
• Mesos: cluster scheduling/resource management,

containers and more
• Kubernetes: container focused, application design

assertions/constraints

Clouds
• AWS ECS: containers in AWS instances
• Google Container Engine: using Kubernetes
• Microsoft Azure: Mesos, Kubernetes and Docker

cluster hosting

18

Benefits

Speed
• Very light-weight equals fast development iterations
• Also fast to move unit through a dev->prod pipeline

Portability
• High degree of assurance that ‘if it works on my

machine, it will work in production’

Isolation
• Multiple environments running side-by-side on small

number of phys. servers

Encapsulation
• Proven to be useful mechanism to bundle useful

services and make available for others to use easily

19

Tensions

Speed
• So easy and fast – single developer can generate many

containers in a short amount of time
• Realize speed through a pipeline requires solid

automation and testing

Portability
• Many competing systems available that can all execute

same set of containers – how and when to make a big
decision on technology

Isolation
• Isolated can mean opaque – limited insight into the

containers themselves
• Secure?

Encapsulation
• Easy to bring in containers developed elsewhere
• Control over software shifted from OPS/SEC to DEV

20

How are tensions being handled?

• Some have replaced VM/Clouds with containers: at the expense of container benefits
• Some have relied on best practices: we trust you developers, don’t do the wrong thing
• Some have built custom tools and infrastructure: it’s mostly there, but some parts are

missing
• Some are deploying at small scale and dev/test: waiting for maturity before moving to

production
• Anchore! Analyze, inspect and control containers based on user-defined

certification/validation policies.

21

Anchore Approach: get the data, expose
the data, use the data
Tension: trusted, certified base containers
• Engine downloads, analyzes, makes available to user

set of curated container base images

Tension: opaque containers
• Tools for inspecting, reporting, navigating container

images
• All the way down to file contents

Tension: speed
• Assist in building automated pipelines by adding

control points for policy application
• Anchore CI/CD integration with tools like Jenkins

Tension: sprawl
• Detailed analysis allows for interesting queries
• Next Heartbleed just came out – see vulnerability

surface immediately (no scan) and get instruction on
how to remediate quickly

22

https://anchore.io

23

https://anchore.io

24

Anchore Tech

25

Anchore.io
• Scanning dockerhub (more soon!) public and private

container images - Security, policy, contents
• ~20TB of analyzed data, 30k images and counting
• https://anchore.io

Anchore Scanner
• Open-source scanner itself
• Linux CLI for analyzing any container image and

applying policy/security scan
• https://github.com/anchore/anchore

Jenkins CI/CD Plugin
• Include anchore analysis/policy application (and gate)

into your container CI/CD process
• Official jenkins plugin from Jenkins UI

On-prem services
• Kubernetes webhook admission control
• On-prem stateful scanning, policy application,

notification service

Challenges and Discussion

• Bare metal -> VM -> OS containers -> regular processes -> PaaS frameworks: is there
’one system’ or will the spectrum continue to broaden?

• Who has the control over what software is eventually actually deployed (dev, ops,
dev/ops, security?

• Storage (well…state in general)!?
• Will containers eventually become just as heavy as VMs, as more standardization,

security, and OS agnostic functionality are added to the mix?
• How will containers impact the increasing ubiquity of mobile environments/OSes?
• Micro-services architectures – lots of discussion about how containers are ushering in

microservices – is the container abstraction right for microservices or just convenient?
• Will containers become the ‘process’, and if so what does the OS look like (and what do

OS distributions look like?)
26

Thank you!
nurmi@anchore.com

HTTP://WWW.ANCHORE.COM

Typical Container Deployment

28

DEVELOPER ORCHESTRATION
SCHEDULERCONTAINER REGISTRY

APPLICATION
CONTAINER

CONTAINER IMAGE
CATALOGUE

CONTAINER ENGINE
HOSTS

PUBLIC CONTAINER
REGISTRIES

(EX. DOCKERHUB)

CONTAINER ENGINE
HOSTS

