
An Introduction to
Cloud Platforms-as-a-Service:

Google App Engine and AppScale
Chandra Krintz

Professor, CS
UCSB

Storage

Server HW

Networking

Servers

Databases

Virtualization

Runtimes

Applications

Yo
ur

 IT
, D

ev
s,

De
vO

ps

Managed by:
• Vendor software
(public) e.g. AWS
• IaaS software
(on-premise) e.g.
Eucalyptus

Security &
Integration

Cloud Infrastructure
(as a Service)

Cloud Platform
(as a Service)

Storage

Server HW

Networking

Servers

Databases

Virtualization

Runtimes

Applications

Storage

Server HW

Networking

Servers

Databases

Virtualization

Runtimes

Applications

Yo
ur

 IT
, D

ev
s,

De
vO

ps Yo
ur

De
vs

Managed by:
• Vendor software
(public) e.g. Google
App Engine, Azure

• PaaS software
(on-premise)

Security &
Integration

Security &
Integration

Cloud Infrastructure
(as a Service)

Managed by:
• Vendor software
(public) e.g. AWS
• IaaS software
(on-premise) e.g.
Eucalyptus

GOOGLE APP ENGINE

§ Google’s platform as-a-service – one of the first public PaaSs
§ Hosting service for web apps, services, and mobile backends
§ No notion of “server” -- yes, serverless before there was serverless

GOOGLE APP ENGINE

§ Google’s platform as-a-service – one of the first public PaaSs
§ Hosting service for web apps, services, and mobile backends

§ The result of over a decade of studying Googlers
§ Make them more productive, innovative, and satisfied

En
dp

oi
nt

s

GOOGLE APP ENGINE

§ Google’s platform as-a-service – one of the first public PaaSs
§ Hosting service for web apps, services, and mobile backends

§ Made publicly available in 2008 (preview) in GA 2011
§ Now over 7 million active apps, >½ of all Internet accesses/week use it

Application
Backend

Web APIs

Storage

APP ENGINE DEVELOPMENT & DEPLOYMENT
§ Decouples app/innovation from common services

§ Share scalable services across apps
§ Automatically manages and scales apps + service ecosystem

APP ENGINE DEVELOPMENT & DEPLOYMENT
§ Decouples app/innovation from common services

§ Share scalable services across apps
§ Automatically manages and scales apps + service ecosystem

App Engine
APIs

SDKs SDKs

APP ENGINE APP & DEPLOYMENT MODEL

§ Everything is a web request or background task
§ Sandboxed execution

§ Restrictions for scale/safety, quotas on free use
§ No file system access
§ Data persistence via Datastore, memcache, and

Cloud SQL
§ Processing limits (frontends and tasks)
§ Language libraries limited to “white list”

APP ENGINE APP & DEPLOYMENT MODEL

§ Everything is a web request or background task
§ Sandboxed execution

§ Restrictions for scale/safety, quotas on free use
§ No file system access
§ Data persistence via Datastore, memcache, and

Cloud SQL
§ Processing limits (frontends and tasks)
§ Language libraries limited to “white list”

§ Quotas (free and billed)
§ In/Out bandwidth
§ Datastore usage
§ Other APIs (Mail, messaging, URL Fetch, …)

TRADITIONAL WEBSITE IMPLEMENTATION

Reverse Proxy

Reverse Proxy

Apache

Apache

Apache

Apache

Apache

MySQL

MySQL

MySQL

MySQL

MySQL

MySQL

MySQL

APP ENGINE SYSTEM

Request
Front End

Front End

Front End

App Server

App Server

App Server

App Master

Datastore

Memcache

Static Files Images

URL Fetch

Users

Task Queue

APP SERVER SYSTEM

• App Master: orchestrates everything
• AE Front End: provides load balancing on App
Servers and Static Servers
• App Servers provide runtime environment for
Application Instances

App Master
(App Engine Management Layer)

Static
Servers

App Servers

App
Engine
Front End

Application
Instances

Application
Instances

Application
Instances

Data Center #2Data Center #1

Edge Cache

Google Front
End

ISP

User

Google’s Fiber

APP SERVER APPLICATION INSTANCES
§ Frontend instance

§ Is not an App Engine Front End (its an “application instance”)
§ Dynamically created and deleted = low cost
§ Enforce fast response and stateless design
§ Suitable for processing short lived requests
§ 60 sec request limit, 10mins for tasks, 32MB memory payload

APP SERVER APPLICATION INSTANCES
§ Frontend instance

§ Is not an App Engine Front End (its an “application instance”)
§ Dynamically created and deleted = low cost
§ Enforce fast response and stateless design
§ Suitable for processing short lived requests
§ 60 sec request limit, 10mins for tasks, 128MB memory

§ Backend instance (another type of “application instance”)
§ Statically created and deleted = higher cost
§ No limit for response time, supports stateful design
§ Suitable for batch processing

§ Both billed on instance hours

APP ENGINE APIS AND IMPLEMENTATIONS (SERVICES)

§ Datastore – key/value object persistent storage
§ Fast, replicated, and scalable for large-scale data

§ Memcache – key/value in-memory cache (not persistent)
§ Task queue, cron, pipelines, map reduce
§ Blobstore: key/value persistent storage for large objects
§ Users, mail, search, XMPP, URL fetch App Engine

APIs

APP ENGINE DATASTORE API
§ Datastore – key/value object persistent storage (dynamic schema)

§ Fast, replicated, and scalable for large-scale data
§ Easily extensible entity structures (kinds), less than 1MB in size
§ Simple API: put, get, delete, range_query (subset of SQL)

§ Only simple queries supported, limited indexing support
§ Strongly consistent entity writes (row-level atomic updates)

§ Limited transaction support for multi-entity atomic updates

BigTable

Megastore

Datastore API

Google Data Center

Properties

class Person(ndb.Model):
user = ndb.UserProperty()
balance = ndb.FloatProperty()
phone = ndb.StringProperty()
last_login = ndb.DateTimeProperty()

class Person(ndb.Model):
...

new_person = Person()
new_person.put()

DATASTORE QUERIES

DATASTORE QUERIES

§ No joins, aggregate functions, search
§ All sorts are performed ahead of time
§ Single property (autogen’d index for each column)
§ Composite (multi-property) – index must be specified

§ Entity groups (related Kinds) – Restricted: 1 update per second
§ Defines the scope of a transaction
§ Hierarchical relationships: Parent->Child->GrandChild

§ ACID transactions within entity groups (optimistic locking)
§ Ancestor queries

APP ENGINE APIS AND IMPLEMENTATIONS (SERVICES)

§ Datastore – key/value object persistent storage
§ Fast, replicated, and scalable for large-scale data

§ Memcache – key/value in-memory cache (not persistent)
§ Task queue, cron, pipelines, map reduce
§ Blobstore: key/value persistent storage for large objects
§ Users, mail, search, XMPP, URL fetch App Engine

APIs

APP ENGINE TASK QUEUES

§ Task: unit of work
§ Write object to datastore
§ Send an email

§ All versions of an application share queues
§ Push queue for automatic execution (HTTP op)

§ Fully managed, retry support
§ Pull queues for programmatic consumption
§ Task have unique names

§ Generated automatically if not assigned
§ Insert new task with same name will fail

APP ENGINE TASK QUEUES

Features:
• Executed ASAP

May cause new instances
Frontend or Backend

- 10min or unlimited
- Max 100K task size

Features:
• Task leased by worker

REST interface with ACL
- Consumer can be outside GAE
- Max 1MB task size

PROGRAMMING APP ENGINE
§ Download the SDK from Google
§ Create an app ID via the admin console: https://appengine.google.com/

§ Program your app
§ Including program configuration files
§ Autogenerated with GoogleAppEngineLauncher (Mac, Windows)

APP CONFIGURATION FILES

§ Python app.yaml – in top level app directory
§ # start single line comments
§ POSIX regex syntax
§ Autogenerated by GoogleAppEngineLauncher
§ Run app via dev_appserver.py

§ Indexes autogenerated
§ Stored in file under #AUTOGENERATED

§ https://developers.google.com/appengine/docs/[python,java]/config/appconfig

application: myapp
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /

script: home.app

- url: /index\.html
script: home.app

- url: /stylesheets
static_dir: stylesheets

- url: /(.*\.(gif|png|jpg))
static_files: static/\1
upload: static/(.*\.(gif|png|jpg))

- url: /admin/.*
script: admin.app
login: admin

- url: /.*
script: not_found.app

APP CONFIGURATION FILES

§ Python app.yaml – in top level app directory
§ # start single line comments
§ POSIX regex syntax
§ Autogenerated by GoogleAppEngineLauncher
§ Run app via dev_appserver.py

§ Indexes autogenerated
§ Stored in file under #AUTOGENERATED

§ Java can be done similarly WEB_INF/app.yaml
§ Autogenerates WAR xml files
§ Indexes autogenerated: WEB_INF/index.yaml

§ https://developers.google.com/appengine/docs/[python,java]/config/appconfig

DEPLOYING TO APP ENGINE
§ Program your app, test with the SDK, generate Datastore indexes
§ Update configuration files (fine tune as needed)
§ Upload your app to Google’s resources for execution
§ Maven (mvn) support for CLI automation

ADMIN CONSOLE

§ https://appengine.google.com/
§ Usage updated daily
§ https://developers.google.com/appen

gine/docs/adminconsole/

GOOGLE CLOUD PLATFORM & TECHNOLOGIES

§ App Engine (PaaS)
§ Compute Engine (IaaS)
§ Cloud Storage
§ Cloud SQL
§ BigQuery

§ Technology APIs…

§ Linked via service accounts
§ Billing must be enabled
§ https://developers.google.com/accounts/doc

s/OAuth2#serviceaccount

Your only deployment option is on
Google’s resources.

Lock-In
You’re stuck
unless you

rewrite your app

Privacy
Your apps & data
no longer under

your control

Disruption
Public clouds
can and do

change & fail

APP ENGINE IS
AWESOME…
BUT! THERE ARE
CLOUDY
ISSUES

THE SOLUTION: APPSCALE
§ Mirrors Google App Engine

§ Using open source & other cloud services

APPSCALE MIRRORS GOOGLE APP ENGINE

Your App Here

Your App Here

APPSCALE MIRRORS GOOGLE APP ENGINE

Your App Here

NO CODE REWRITE

o On-premise
o Behind your firewall
o Everywhere

APPSCALE MIRRORS GOOGLE APP ENGINE

THE SOLUTION: APPSCALE
§ Mirrors Google App Engine using open source & other cloud services

§ Implements the App Engine APIs
§ Automatically manages and scales apps + service ecosystem

App Engine
APIs

SDKs SDKs

APPSCALE EXTENSIONS & RESEARCH
§ Plug/play multiple alternatives for each:

open source, public cloud, proprietary, legacy
§ API governance

NO
CODE

REWRITE

APPSCALE SOFTWARE STACK

Blobstore
(Tornado)

XMPP & channel
(ejabberd,strophejs)

HDFS

Datastore
(Cassandra, MySQL
Cluster, MongoDB,

MemcacheDB, Redis, …)

Datastore
(HBase or Hypertable)

AppController and AppServer(s)

memcached

Routing (Nginx and HAProxy)

Datastore Support Layer
(API, adaptors, plug-ins, automatic config/deploy/scale support)

H
A
D
O
O
P

Task Q
(RabbitMQ)

HPC/Analy
tics
Toolkits

S
Q
L

D
B

API Layer

EASY APPSCALE PAAS DEPLOYMENT

Each instance takes on 1+ roles

AppScale VM image/instance
contains complete SW stack

AppScale
Cloud

Administrator
AppScale Cloud

AppScale Cloud

Public IaaS cloud (EC2, GCE) Private IaaS cloud (Eucalyptus)Private virtualized Cluster
(KVM, VirtualBox, VMWare, Cloud)

AppScale Cloud

The AppScale
Tools

